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Figure 1: Our proposed cone-based direct illumination information sharing abstraction enables efficient direct illumination rendering not
only for single viewer setups but also for multi-user setups as can be seen here for the sports car model ( [Yas], [DJM], [Zam]). Different
views can be seen with the cone representation for a specific surface point.

Abstract
Even though stochastic methods and hardware supported ray tracing are increasingly used for computing direct illumination,
the efficient real-time rendering of dynamic area light sources still forms a challenge. In this paper, we propose a method
for representing and caching direct illumination information using a compact multi-cone representation that is stored on the
surface of objects. While shading due to direct illumination is typically heavily view-dependent, the incoming radiance for
surface points is view-independent. Relying on cones, to represent the projection of the dominant visible light sources, allows
to reuse the incoming radiance information across frames and even among multiple cameras or viewers within the same scene.
Progressively refining and updating the cone structures not only allows to adapt to dynamic scenes, but also leads to reduced
noise levels in the output images compared to sampling based methods. Relying on surface light cones allows to render single
viewer setups 2-3x faster than random sampling, and 1.5-2x faster than reservoir-based sampling with the same quality. The
main selling point for surface light cones is multi-camera rendering, For stereo rendering, our approach essentially halves the
time required for determining direct light visibility. For rendering in the cloud, where multiple viewers are positioned close to
another, such as in virtual meetings, gathering locations in games, or online events such as virtual concerts, our approach can
reduce overall rendering times by a factor of 20x for as few as 16 viewers in a scene compared to traditional light sampling.
Finally, under heavily constraint ray budgets where noise levels typically overshadow bias, surface light cones can dramatically
reduce noise.

1. Introduction

Rendering systems in the cloud are on the way of revolutioniz-
ing the way we experience video games and virtual environments.
However, these systems typically treat users as individual instances
without considering that the respective image generation tasks are
all executed within the same infrastructure. As a result, a large num-
ber of computations is potentially redundantly computed and thus
computation power wasted. This may particularly be true for sce-

narios where multiple users are in the same area or look at the same
object, such as showrooms or team-based games. In such cases, the
rendering results are often similar, indicating a potential for merg-
ing computations. However, even in cases where potential sharing
of computation seems straightforward, like stereo rendering for vir-
tual reality (VR), computation sharing is hardly considered.

In general, real-time rendering realistic scenes involves comput-
ing various effects that are all contributing to the final output color.
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While it seems natural to share computations for view-independent
effects, which may be present in a shareable data structure, sharing
view-dependent effects is significantly more difficult.

One essential effect is the shading of surfaces, or rather calculat-
ing the light emitted from surfaces towards the viewer, as expressed
in the rendering equation [Kaj86],

Lo(x,ωo) = Le(x,ωo)+
∫

Ω

fr(x,ωi,ωo)Li(x,ωi)(ωi ·n)dωi,

where Lo is the outgoing radiance, i.e., the final color, Le the radi-
ance emitted from the surface, fr is the Bidirectional Reflectance
Distribution Function BRDF, Li is the incoming radiance and ωo
the direction of the outgoing radiance (i.e. direction to the viewer).

The occurrence of ωo clearly indicates that the result is view
dependent and therefore sharing the final shading Lo between
different views is not possible. However also a partial reuse of
view-independent computations would be beneficial to reduce ren-
dering costs. Looking at the rendering equation one can see the
only view-independent parts are in the integral, which is also the
most computational expensive part, due to it accumulating all in-
coming radiance. For specific surface setups where the BRDF is
view-independent, for example for diffuse surfaces in combination
with older reflectance models, the whole integral becomes view-
independent and could be reused. Due to this only being an edge-
case, we focus on reusing Li and look at its individual parts splitting
it into a direct and indirect part. The integral than can be expressed
as, ∫

Ω

fr(x,ωi,ωo)
(
Li,DI(x,ωi)+Li,IND(x)

)
(ωi ·n)dωi,

Direct illumination (DI) Li,DI is the radiance coming directly from a
light source and indirect illumination Li,IND is the radiance arriving
at a surface point by bouncing off other surfaces.

While indirect illumination is often smooth and thus exhibits lit-
tle variance when changing viewing directions, DI, typically comes
from well localized strong light sources. Due to smoothness mul-
tiple directional-dependent data structures have been proposed to
share Li,IND. However, for the highly directional-dependent DI, it
can be more challenging to find an accurate representation. But
finding a shareable representation and sharing results would reduce
costly DI evaluations. If Li,DI comes from few point light sources,
the evaluation of Li,DI comes down to evaluating whether the re-
spective light sources are visible from x. This information could
even be shared using shadow maps or storing visibility informa-
tion for each surface point in an on-surface cache [?]. The problem
becomes more demanding and increasingly complex, when strong
area light sources are involved. Computing their partial visibility
from x is more time consuming and is often solved by sampling vis-
ibility through ray tracing. If multiple large light sources are found
in a scene, tracing multiple shadow rays for each light sources for
all visible points x in a view, quickly becomes a bottleneck.

In this paper, we propose the use of a cone-based representa-
tion to store incoming DI information. This directional based rep-
resentation enables the sharing of rendering computations between
different viewers for heavily view-dependent materials in scenes

with large complex light source setups reducing overall computa-
tion costs significantly.

We make the following contributions:

• We present a cache-able data structure specifically designed for
incoming radiance that can handle large area light sources. It is
view-independent and can be stored on the surface of objects.

• We provide a progressive real-time generation and update
method for our cone caches, which enables temporal reuse,
adapts to fast moving light sources and allows the reuse between
different viewers.

• We evaluate our caches in detail for single and multi-viewer sce-
narios, comparing them against simple and traditional data struc-
tures for caching radiance as well as optimized sampling strate-
gies that keep information in screen space.

2. Related Work

In recent years, ray tracing has been increasingly used in real-
time graphics. As such, sample reuse has been an important topic
which is directly linked to caching radiance. A technique that re-
covers sampling distributions by on-line learning was proposed
by [VKŠ∗14]. Instead of reusing distributions samples can di-
rectly be stored and reused using reservoir resampling (ReSTIR)
[BWP∗20, LKB∗22], which also works for global illumination
[OLK∗21]. As ReSTIR uses the BRDF for sample generation, such
a sample cache is view-dependent and as such is only partially us-
able for multi-viewer DI, where different directions are responsible
for view-dependent highlights.

Caching radiance likely goes back to Cabral et al. [CMS87] and
has been widely explored for precomputed radiance transfer (PRT)
typically in combination with spherical harmonics (SH) [SKS02].

Ng et al. [NRH04] proposed an accurate all-frequency PRT re-
lighting approach, which requires high storage and precomputa-
tion costs. Analytic methods for area lights, such as Heitz et al.
[HDHN16], do not consider shadows. There have been many sub-
sequent developments in PRT, with Annen et al. [AKDS04] propos-
ing spherical harmonic gradients for mid-range illumination, and
Zhou et al. [ZHL∗05] introducing dynamic scenes and near-field
lights for all-frequency relighting. Ren et al. [RWS∗06] used spher-
ical harmonics for soft shadows in dynamic scenes, but only for
sphere lights. Details on these developments can also be found
in the (relatively dated) surveys on that topic [Leh07, R∗09] Re-
cent work in the direction of PRT uses analytic spherical harmonic
gradients to represent complex light sources [WCZR20]. Recently,
neural approaches have also been proposed for PRT [RBRD22].
However, while we also want to cache radiance, our focus is on
real-time cache generation and rending dynamically lit scenes.

Keller et al. [Kel97] introduced Virtual Point Lights (VPLs) that
are placed through a quasi-random walk. Shadows are determined
by the use of a shadow map for each VPL. This and also more im-
proved methods like [LSK∗07] mostly generate diffuse shading and
need a lot of VPLs to accurately represent realistic light setups. De-
rived methods like Progressive Lightcuts ( [DGS12], [DKH∗14])
deal with the memory issue, but still have problems with high di-
rectional lighting.
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General approaches for irradiance and radiance caching have
been used for global illumination [WRC88, KGPB05, GSHG98]
and are to some degree related to our work although they typi-
cally do not capture high frequency. Those caches can actually be
sampled sparsely and interpolated using sparse gradients [WH92,
KBPZ06, JDZJ08]. For irradiance and smooth global illumnation,
explicit caches can be built in real-time [KVS∗14, MGNM19]. Re-
cent approaches for radiance caching focus on neural structures,
such as neural radiance caching [MRNK21], which can potentially
be made faster with recent developments like instant neural graph-
ics primitives [MESK22]. Similarly to our finding, neural radios-
ity [HCZ21] found that it is simpler to cache Li than Lo. Still these
approaches typically either do not run in real-time or only capture
low frequencies.

Multiple non-screen space approaches have been proposed. Ob-
ject space shading introduced by Cook et.al. [CCC87] was one of
the earliest, which was later improved on by Burns et.al. [BFM10].
Another approach is to shade in texture space. Hillesland [HY16]
showed a technique to record access to texels in screen space, but
shade in texture space. Such shaded texels can also be used for
streaming and view extrapolation [MVD∗18]. As discussed before,
reuse of shading can be difficult especially in the setups, but some
(diffuse) shading can be temporarily reused [MNV∗21]. However,
this does typically not extend to different viewers if the material
is not completely diffuse. A different split approach that shwos
how ambient occlusion can be streamed was proposed by Neff et
al. [NBD∗23]. They transmit points from server to client and then
blend the final image by using an efficient hash grid. Sharing com-
putations for participating media was proposed by Stojanovic et
al. [SWT∗23]. They investigate a combination between world- and
view-aligned caching methods for multi-viewer setups.

Weinrauch et al. [WTS∗23] showed a proof-of-concept of
a cloud-native rendering approach. Various effects were im-
plemented using with what they call surface and world space
caches. Additional effect were implemented by [WLT∗23]. They
[WTS∗23] also showed a direct illumination effect for analytic
light sources, based on hard shadows. We propose an approach that
makes a direct illumination effect for area light sources possible.

2.1. On-Surface Caches

The surface caching system, that is the base for our effect, is an im-
plementation of the On-Surface Cache (OSC) system [WTS∗23].
OSC splits meshes into smaller connected components called is-
lands to provide a unique UV-mapping with little distortion. Each
island has its own texture space, which simplifies the pipeline and
enables efficient triangle lookup textures. OSC also uses a software
approach to virtualize the texture spaces by splitting textures into 8
by 8 texel blocks and using a combined single hash map of all vir-
tualized textures. The OSC pipeline is split into multiple stages, as
can be seen in figure 2. The first stage (Visibility) looks at which en-
tries are visible and needed, generates non-duplicated requests and
ensures that cache blocks are mapped. In the second stage (Cache
Update Queueing) requests for shaders for the next stages are cre-
ated. After that, the third stage (Triangle Lookup Rendering) gen-
erates a triangle lookup for cache blocks to create a mapping from

Figure 2: Basic overview over the OSC system proposed by
[WTS∗23]. After determining which entries are visible and queu-
ing updates for these entries, all updates, for example for the AO
and HardShadows effect, are executed. After that the final images
are composited.

cache to surface space. In the fourth stage (Cache Update) various
effects are updated, based on the shader requests made in the sec-
ond stage. The last stage (Compositing) then combines these effects
into an final image. Like other effects implemented in [?], we will
implement our effect in the Cache Update and Compositing stages
and do not interfere with others.

3. Cone-based Radiance Caching

Shading generated with direct illumination can not be fully reused,
but reusing some parts of the information gathered in the DI com-
putation process is possible, as was shown before. Efficient direct
illumination information reuse needs to fulfill several key require-
ments. Firstly, a large amount of data must be abstracted to ensure
fast shading performance. Secondly, an accurate abstraction must
be chosen to generate high-quality results, which may involve in-
corporating a directional component in the caching strategy. This
is crucial to accurately represent specular highlights and adhere to
the principles of the rendering equation. Furthermore, the caching
strategy should be memory-friendly to ensure efficient memory us-
age during real-time rendering.

We propose a cone-based DI information abstraction that fulfills
all requirements above. More specifically we use multiple cones
(typically three) to describe all incoming radiance at a surface
point. For the cone abstraction, we use a direction D, an opening
angle α and the radiance gathered, as shown in Figure 3. In addi-
tion to the cones we also store a cone count and an accumulation
count for radiance noise reduction. Naturally increasing the maxi-
mum number of cones results in a finer division of space and there-
fore can increase the precision of our abstraction.

Our method is split in an information gathering part, which is
added to the Cache Update Stage and a shading part, which is added
to the Compositing Stage. Figure 4 shows the proposed process,
where a single unified update for each surface point is executed to
construct the cones. For the image generation process, cones are
fetched, sampled, shaded and composited with the color of other
effects.

3.1. DI Gathering and Cone Construction

The most important part of our system is the DI information gath-
ering and cone-based representation construction process, that we
add to the Cache Update Stage. The cache update is performed
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on a periodic basis for every visible surface point. When a sur-
face point becomes visible the cone based representation is empty,
otherwise the cycle starts by unpacking the stored cone represen-
tations. This includes format conversion and bit operations. After
that we first determine whether an entry exists on a higher level-of-
detail (LOD). If such an entry exists, we reuse this information.

To simplify the main processing we split it in two steps. The first
step 3.1.1 only adds radiance information to our cone representa-
tion. For light sources that move relative to a surface point (either
due to movement of the light source or the object), simply adding
radiance to the cache would not suffice. Therefore, the second step
3.1.2 can shrink cones, when there is no longer a light source visi-
ble.

3.1.1. Incoming Radiance Updates

The first step adds new radiance to the cone representation. To this
end, we randomly sample all scene light sources, including emis-
sive surfaces, analytic area lights and environment maps. The num-
ber of samples drawn are chosen according to the desired quality
and speed requirements. In practice we mostly use 8 samples. This
achieves high frame rates, but due to the temporal accumulation,
DI information stays accurate.

For each sample, we determine if there is a direct unobstructed
path from the surface point to the light sample location. If ray trac-
ing indicates that this radiance reaches the surface point we add
this sample to the cone structures. As surface points can be visi-
ble for a long time and light sources may stay relatively constant,
adding samples to the cones may not yield improvements anymore.
To reduce these unnecessary computations, we reduce the number
of traced rays over time if no dynamics are detected.

In Figure 5, we show the four different steps of how a single
incoming radiance sample may be added to the cone structures: The
left column shows the existing cone structures and the new sample
illustrated by an arrow. Cone structures after adding the sample can
be seen on the right. (A) shows a sample inside an existing cone
which results in the radiance being added to the cone. (B) if the
sample is outside existing cones and the maximum number of cones
has not been reached a new cone is added. (C) if the maximum
number of cones has been reached and the new sample’s angle to
an existing cone is less than the cones angles to each other, the
cone is extended to include the sample’s direction and radiance. (D)

Figure 3: Cones representing incoming radiance information (di-
rection D, angle α, radiance) on a surface point.

Figure 4: Abstraction of our added DI effect update and shading
generation.

otherwise the closest existing cones are merged and a new cone is
added.

While the cone structure update describes plausible geometric
setups before and after update, correct handling of the accumulated
radiance is important. To keep track of the accumulated radiance
and allow for adaptive updates over time, we use the accumulation
count C: To produce high quality DI information we chose the sec-
ond option, using the count C:

Li,new = Li,old · (1−1/C)+Li,sampled ∗ (1/C).

Increasing C with the exact samples in every cycle, would only
work for static scenes. Relying on a full reset C, would capture dy-
namics, but of course would lead to information loss. However, in
our use case, we can detect changes through changes in the cone
structure. Whenever a cone changes its direction it is an indication
that the lighting situation that effects the surface point has changed.
In this case we can reduce C such that the new information is in-
corporated faster. We use the angle α, which is the angle between
the previous cone direction and its new direction, to help to reduce
C. If α and the C surpass a small threshold, we use the following
operation to adapt C =C/min(max(1+α ·0.05,1.01),3.0).

3.1.2. Dynamic Scene Updates

The previous steps all extend the cone structures. For dynamic
changes, it is important to have a way to further adapt the cones.
When for example a light moves, as can be seen in Figure 6, the
first step discussed above yields an extension of the cone to enclose
the light at the new position. This results in a cone that is too large,
because it also includes the lights radiance at the previous positions.
Therefore, we need a method to detect where cones are no longer
needed.

In order to achieve this, we regularly sample within existing
cones to determine if there is a light source still present. More
specifically, for each cone we generate a directional sample inside
the cone at some angle that is ε away from the opening angle. ε is
chosen based on a percentage of the opening angle. If such a sample
hits a light source, the sample is discarded, due to the cone being
accurate in this direction.

If no light source is hit, small cones (with small opening an-
gles) are simply discarded. Larger cones, are shrunk, as can be seen
in Figure 7. First, we determine by how much the cone should be
shrunk, δ = α− acos(dot(D,s)), where α is the opening angle, D
the cone direction and s the sample direction. α is reduced by δ
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and the cone is rotated away from s by δ/2. Finally, we make sure
that the adjustment for C only happens once in one update cycle,
as cone shrinking often goes hand in hand with previous updates to
the cone direction.

3.2. Shading

For every viewer, we sample the caches to compute the surface
shading. For every pixel, we rely on the material information from
the G-buffers and query the cache data. We still need to compute
the integral over ω to evaluate the view-dependent BRDF fr. An
analytic computation is typically too costly, so we simply rely on
sampling and iterating over all cones, as outlined in Figure 8

The final color evaluation then comes down to:

Lo(x,ωo) = Le(x,ωo)+

nC

∑
c

nS

∑
s

fr(x,ωi,c,s,ωo)
Li,DI,SLC (c)

nS
(ωi,c,s ·n)

where nC and nS are the number of cones and samples, Li,DI,SLC is
the radiance stored in the surface light cone and ωi,c,s is the sample
direction.

In practice, we use 16 samples for high quality shading. Note that
this sampling does not involve ray tracing as the caches already
capture visibility. Furthermore, these samples are highly efficient
to compute on the GPU, as all information can be fetched once
and the computation itself is typically quite efficient. For simple
less view-dependent materials, fewer samples (close to the cone
center) often suffice according to our experiments. However, we
used 16 samples for all our reported tests. The resulting shading
color for DI then can be combined with other effects like indirect
global illumination, hard shadows or ambient occlusion.

Figure 5: Different steps in the cone construction process. On the
left one can see cone structures with a new sample. The resulting
structures with the integrated sample can be seen on the right.

Figure 6: Example visualization for a moving light source and the
cone from the same surface location, which tracks the light source
over time. When the light moves partially behind the pillar the ra-
diance is represented by two cones that capture the radiance that
passes left and right of the pillar.

Figure 7: On the left, one can see a moving light source and a cone
with radiance added for the new position, resulting in a cone that
still incorporates old radiance directions. The cone is sampled and
light presence determined. On the right, one can see the shrinking
of the cone to exclude the sample.

3.3. Cache Compression

We do not need to store cache entries as full floating point num-
bers. We convert the cone direction from world space to a local
on-surface space (considering the surface normal and tangent) and
then further convert to spherical coordinates, which we store as 16-
bit floats. For the opening angle, we use a 6-bit fixed point rep-
resentation. We capture radiance in RGB space using 18 bits per
channel. To capture C we use 8 bits, and finally 2 bits for the num-
ber of active cones. This overall results in 286 bits, which fits into
three RGB32 textures with 2 bits to spare.

4. Results

For the evaluating of our proposed caching strategy, we focus on
performance and quality. First we focus on single viewer perfor-
mance, comparing against state-of-the-art rendering solutions. Af-
ter that we investigate the usefulness of our approach for its in-
dented use case: multi-viewer sharing. Additional evaluation re-
sults can be found in the supplementary material, where we carry
out a small ablation study, discussing potential alternative cache en-
try structures, then we look how different cache biases effect per-
formance and finally we show results for different light sizes and
movement speeds.

Our implementation runs in NVIDIA Falcor, which we also use
for all comparisons. If not otherwise specified, we use three cones
as our radiance representation, 8 primary samples for cache update
and a cache bias of 1.0. After 8 initial cache updates, we reduce
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Figure 8: All cones are sampled to generate samples for shading.

the update rate to 1 ray per cache entry (unless there is motion de-
tected). For comparison, we use the Falcor ray tracer implementa-
tion with tunable sample counts to randomly sample light sources.
Due to the lighting setup, 16 samples represent a fast, low quality
baseline, and 48 samples can be considered a good quality baseline.
For the ground truth we used 2048 samples. For a state-of-the-art
comparison, we use ReSTIR [BWP∗20] in its latest optimized ver-
sion as given in the RTXDI framework [NVI]. For timing measure-
ments, we ignore the common steps (G-buffer generation and tone
mapping). All evaluations were performed on a RTX 3090 GPU
(24 GB) with an AMD Ryzen 7 3700X CPU at 1920×1080.

For our main evaluation, we use four well-known scenes, which
we modified to offer challenging lighting setups, as shown in Fig-
ures 9a, 9c, 9b and 9d. Viking Village [Tec] is an outdoor scene,
where we placed a large moon-like light source in the sky and
used emissive torches to light the scene. Intel Sponza [Int] is an
updated version of the Sponza test scene, which we extended with
four emissive lights, three smaller round lights placed in the lower
hallways and one large light in the top center of the scene, which we
will refer to as Sponza. San Miguel [Lla] forms a test case with high
geometric complexity, where multiple emissive lamps are present
in the scene. The large amount of discontinuous foliage geometry
makes it a difficult usecase for on-surface caches. Additionally, an
emissive environment map [HDR] is present in the scene. Finally,
we modified Bistro Exterior [Lum17] to form a challenging dy-
namic use case, where we placed 2 spherical emissive lights and a
rotating emissive cube that move through the scene. Additionally,
we placed rotating wheels, creating a high-frequency movement.
For all tests, we recorded multiple uncorrelated camera paths of
multiple seconds through the scene and our results are the averages
over all frames.

4.1. Single Viewer

Our single viewer experiments are summarized in Table 1. While
RT 16 was designed as our fast, low-quality base line, its quality is
in most cases comparable to RTXDI.

We attribute the unexpectedly low quality of RTXDI to the fact
that larger area light sources require multiple distributed samples,
while RTXDI focuses on reusing samples spatially and temporally
and thus works best for many point light sources rather than few
area light sources. Thus, both methods form the quality floor in our
tests. In all tests, our approach achieves the highest SSIM value, and
is in some cases only marginally beaten in Flip and PSNR by RT 48

which has a significantly higher runtime. In scenes with low geo-
metric complexity (Viking Village) ray tracing itself is relatively
efficient and thus RT 16 is quite fast. In more complex scenes,
RTXDI is faster as it can reduce the number of traced rays and
the constant overhead of reservoir resampling stays constant. For
scenes with little motion, our approach can operate with few rays,
leading to the fastest performance in Viking Village and very simi-
lar runtime to RXTDI in Sponza and San Miguel. If all light sources
exhibit significant motion (Bistro Exterior), we increase the num-
ber of traced rays for higher quality. Thus, even in a single viewer
setup—for which our method has not been designed for—our ap-
proach is among the fastest approaches and in most cases achieves
the highest quality. Note that due to our design, our renderings are
relatively noise free, but obviously biased. Thus, we do not require
an additional per-viewer denoising step.

4.1.1. Multiple Viewers

If there are multiple viewers in a scene, there is a high likelihood
that there is some overlap among them, especially for constraint
scenarios like virtual meetings or gathering locations in games. Due
to the design of our approach, areas visible from multiple view
points only need their caches to be generated once. An example
rendering for Sponza for 16 viewers is shown in Figure 10.

To evaluate the possible scaling of our approach, we start with a
controlled experiment, where we force specific amounts of overlap.
We position cameras all at the same location as they move along
one recorded camera trajectory, but rotate them so that there is a
specific controlled overlap in their views. The result of this experi-
ment can be seen in Figure 11. For 100 percent overlap, caches are
only generated once, and only the per-viewer shading cost, i.e., go-
ing from Li to Lo, increases the timing when adding another viewer
to the scene. With lower overlap, more cache entries need to be
generated, and thus less time is being saved. The actual achiev-
able overlap highly varies between scenarios—an ideal scenario is
formed by virtual meetings where all participants focus on the per-
son currently talking, thus an overlap of 60%-80% can easily be
achieved. Note that even for low overlaps our timing is far from
doubling when doubling the viewer count, which shows that there
is a constant overhead to multiple steps in our approach: Cache al-
location and cache update queuing is only happening once for all
viewers and hardly shows additional performance costs. Further-
more, larger cache update requests may only show little additional
ray tracing costs, as rays are highly correlated (compared to more
scattered tracing if surfaces are only partially visible).

To test a more random scenario, we use camera trajectories that
were recorded from different independent movements, see Figure
12. In this 16 viewers setup, all viewers start from different loca-
tions, looking somewhat towards the middle of the scene. At scene
start every viewer looks to the center of the scene creating an over-
lap of about 50 percent. Afterwards they randomly move, leading
to an average overlap of about 20%. Even relying on such random
movement, our approach scales significantly better than single-
viewer methods, as shown in Figure 13. Even for cases where our
approach is slower for the single viewer setup, we quickly outper-
form the competing methods as additional viewers are added to
the scene. Note that we still use the same quality settings as in the
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(a) Example view from our modified Sponza scene with with
lamps placed in the corridors. Although our approach is also
based on stochastic sampling, restricting the representation to
cones, leads to capturing highly plausible specular highlights
and view-dependent details with little noise. Competing ap-
proaches exhibit less bias but significantly lower quality.

(b) Our modified San Miguel scene features high amounts of ge-
ometric detail under a difficult light setup. Our approach clearly
outperform the competing approaches in quality.

(c) Our extended Bistro Exterior scene features fast moving light
sources and dynamic objects, making it the most difficult test
scene for our approach. Especially in areas with thin shadow
features our approach significantly outperforms the competing
approaches.

(d) Our modified Viking Village scene. In addition to the existing
torch mesh lights we added a large moon-like light to the scene
to form a challenging interesting use case.

Figure 9: Our test scenes. Sponza (a), San Miguel (b), Bistro Exterior (c), Viking Villange (d)

Viking Village Intel Sponza Bistro Exterior San Miguel

t [ms] Flip↓ PSNR↑ SSIM↑ t [ms] Flip↓ PSNR↑ SSIM↑ t [ms] Flip↓ PSNR↑ SSIM↑ t [ms] Flip↓ PSNR↑ SSIM↑

RT 16 12.65 0.048 28.84 0.839 8.97 .047 25.08 .827 10.07 .039 29.54 .863 21.50 .076 23.53 .645
RT 48 36.49 0.032 33.38 0.933 25.84 .032 29.06 .898 28.72 .026 34.42 .942 62.31 .052 27.39 .788
RTXDI 13.73 0.072 24.31 0.656 5.26 .072 24.61 .806 10.60 .062 24.29 .723 11.66 .090 24.15 .628
Ours 8.82 0.037 34.66 0.950 7.09 .033 31.72 .936 19.65 .031 32.45 .956 12.60 0.037 33.01 .933

Table 1: Single viewer results for our four main test scenes. Even though our approach is designed for multi-viewer sharing, it also is
advantageous for single viewers, as it can progressively update its representation for Li for each surface point. Bistro Exterior forms the
most difficult test case as all light sources are moving fast, and we require additional cone updates. In all other test cases, our approach is
among the fastest while achieving the best overall quality.
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Figure 10: Example multi-view rendering from our modified
Sponza scene with 16 randomly moving viewers. We see an average
overlap of 20%.

single viewer setup and thus achieve significantly higher quality
than RT 48 and RTXDI while outperforming them with a factor of
2−3× for 16 viewers—even in the random overlap case featuring
only 20% overlap.

In Figure 14 we show how different number of viewers im-
pact used memory (excluding memory used by all approaches, like
scene data, G-Buffers and output buffers). For our approach, the al-
located cache blocks dominate the memory requirements (ours ac-
tive), while additional data structures for triangle id rendering and
gathering update requests contribute little. Both RT 16 and RT 48
do not require additional memory as their output can directly be ac-
cumulated to the output buffers. Finally, RTXDI requires reservoir
buffers of the screen resolution for spatio- and temporal reservoir
resampling. Even though these buffer do not require a lot of mem-
ory for a single viewer, duplicating screen-sized buffers for each
viewer can quickly lead to significant amounts of memory. Our
approach on the other hand scales with the overlap. Furthermore,
we report actual memory requirements in term of allocated blocks,
which have a size of 8× 8 texels. A more fine granular memory
management could significantly lower our memory requirements—
typically our blocks are about 50% filled only.
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Figure 11: Multi-viewer overlap comparison for the Bistro Exte-
rior scene with rendering time in ms. Even for low overlap percent-
ages of 20% we achieve very good scaling, as we can also amortize
constant overhead for cache allocation and update queuing.
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Figure 12: To demonstrate the achievable overlap in difficult ren-
dering setups, we use uncorrelated camera paths through the scene.
In this example for Sponza 16 viewer are randomly positioned and
start by looking into the center of the scene, before moving through
the scene. On average, we still achieve 20% overlap in this setup.
Other scenarios, like virtual meetings or gathering situations in
games, can easily achieve 60-80% of average overlap.
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Figure 13: Realistic scaling for 1 to 16 viewers in Sponza demon-
strating our superior scaling in comparison to screen-space ap-
proaches. Note that our approach also achieves superior quality.

4.2. Stereo Rendering

An ideal use case for our technique is stereo rendering. The overlap
in this kind of setup is very high due to similar camera placement
and orientation. In Figure 15 we show 16 stereo views, resulting
in 32 rendered images, with timings in Figure 16. Additionally, we
report timings for 8 stereo viewers. The other approaches behave
roughly the same for 16 single and 8 stereo views (there may be a
small gain due to higher coherence between rays in the stereo case
as well). However, our approach reduces run time to roughly 74%
due to the higher overlap. Similarly, going from 16 single viewers
to 16 stereo viewers only increased runtime by 1.36× in our case.
RTXDI was not able to render 16 stereo views in this test as it ran
out of memory.

4.3. Limitations

As mentioned above we always used three cones in our experi-
ments. That is possible in our scenes as there are typically no more
than three dominant light sources at any one location in the scene.
However, if the number of light sources is significantly higher, our
image quality reduces, as can be seen in figure 17. As our process of
determining incoming radiance follows a random sampling our im-
age quality degradation shows up as noise, similar to other random
sampling approaches like RTXDI. In any case, it is advantageous
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Figure 14: Memory consumption of different techniques for Sponza
1-16 viewers on uncorrelated paths. Memory consumption in-
creases steadily, while our method only consumes additional mem-
ory for newly visible regions. Ray traced methods do not use addi-
tional memory.

Figure 15: Example views for Sponza with 16 stereo viewers.

to configure the number of cones for a specific scene. If the number
of cones significantly changes throughout one scene, using a high
number of cones everywhere increases the memory requirements
to the worst case.

While our approach also works well outside of the multi viewer
scenario and even outperforms highly tuned algorithms like RTXDI
in our single viewer tests, it is not universally applicable. In case a
scene only consists of point lights, a cone approximation is less op-
timal, as we will simply merge close-by points. As such, relying
on a simple visibility/occlusion caching approach may work sig-
nificantly better. Similarly, if smooth DI, like from an environment
map, should be represented, a equally smooth cache representation
like e.g. spherical harmonics would likely work better. An example
of a environment map setup that is difficult for our method can be
seen in figure 18.

Finally, while our approach also works for fast moving light
sources, our runtime nearly doubles for such light sources. While
our cone cache is still competitive in this case (even in the sin-
gle viewer scenario), our advantage is clearly diminished. How-
ever, large, fast-moving area light sources are in general more of an
exception in widely used virtual scenes.

5. Conclusion and Future Work

We proposed a DI cache that abstracts incoming radiance on sur-
face points with cone structures. These cache structures are view
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Figure 16: Timing in ms for Sponza for stereo rendering compared
to single viewer rendering. Stereo rendering leads to large over-
laps between views, resulting in significant performance gains com-
pared to equal view count non-stereo rendering.

Figure 17: Hangar scene(Composition of modified models [ZLM]
[jQu] [Mat]) with multiple moving lights. One can see that when
more dominant lights are added (right) noise starts appearing in
certain areas.

independent and as such can be reused by different viewers in the
same scene. Our results show that our caches are even advanta-
geous in a single viewer setup, leading to high quality noise-free
images, especially if the light sources exhibit only little movement.
As additional viewers are added to a scene, our approach shows
superior scaling behavior, even under low view overlaps of around
20%. Our performance increases are not only due to reusing the
cached data among viewers, but also the overhead of our cache

Figure 18: We show two environment map setups for viking vil-
lage. The left picture shows little noise for a usual environment
map [And]. We also constructed an environment map(lower right)
to show where our method develops noise, as can be seen in the top
right image.
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management amortizes across the viewers. Obviously, in scenarios
with even more overlap between views, like stereo rendering, we
show even more significant performance gains.

Our current approach uses a single data structure to capture all
incoming direct light. However, depending on the light source, e.g.,
point and directional lights, a cone structure is an overkill. Fur-
thermore, smooth lighting, like from a smooth environment map or
even global illumination may be better captured with spherical har-
monics. Thus, in the future, we believe adapting the chosen cache
structure dynamically for the actual experienced light situation is
key.

Furthermore, we currently focus on capturing and reusing light-
ing information in a caching structure. For this technique to truly
scale to the cloud, a fully distributed real-time caching and render-
ing system is needed. Depending on the use case, this may simply
be a multi-GPU server or actually a fully distributed cloud service.
This comes with various additional challenges, like distributed state
sharing, integration of distributed rendering into an actual engine,
and considering latencies. In any case, we believe that sharing ren-
dering computation may be used to save computations and energy
and truely support scaling rendering.
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