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ABSTRACT
In this paper, we analyze the special requirements of a dynamic
memory allocator that is designed for massively parallel architec-
tures such as Graphics Processing Units (GPUs). We show that tra-
ditional strategies, which work well on CPUs, are not well suited
for the use on GPUs and present the thorough design of ScatterAl-
loc, which can efficiently deal with hundreds of requests in parallel.
Our allocator greatly reduces collisions and congestion by scatter-
ing memory requests based on hashing. We analyze ScatterAlloc in
terms of allocation speed, data access time and fragmentation, and
compare it to current state-of-the-art allocators, including the one
provided with the NVIDIA CUDA toolkit. Our results show, that
ScatterAlloc clearly outperforms these other approaches, yielding
speed-ups between 10 to 100.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Allocation /
deallocation strategies
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1. INTRODUCTION
Dynamic memory allocation is an indispensable feature of mod-

ern operating systems and virtually every computer program de-
pends on this feature to allow for a dynamic response to varying
inputs. Consequently, almost every general purpose programming
language provides some mechanism to create new objects at run-
time. Efficient dynamic memory allocation became more demand-
ing with the advent of multi-core CPUs. Since system memory
is a shared resource, conflicts during memory allocation are an is-
sue. To avoid conflicts, synchronization among multiple cores is
required. However, this synchronization requirement defines a se-
rious bottleneck for many applications [17].

Besides the development of multi-core CPUs, the use of mas-
sively parallel hardware architectures like Graphics Processing
Units (GPUs) for general purpose applications became more and
more popular. For these kinds of architectures, dynamic memory
allocation is an even greater challenge. While current consumer
CPUs feature between four to eight cores, current graphics cards
are shipped with several hundred cores. In addition to the much
larger number of cores competing for memory, the architecture’s
high latency for accessing global shared memory complicates the
development of an efficient dynamic memory allocator.

The most recent NVIDIA GPU architecture, Fermi, alleviates
the problem of high latency for global shared memory access by
introducing a cache [18]. For this architecture, NVIDIA’s Compute

Unified Device Architecture (CUDA) programming model supports
dynamic memory allocation in device code [19]. Dynamic memory
allocation for the stream programming model opens up completely
new possibilities for GPU programming.

Examples for an efficient use of this new feature range from im-
age detectors, which store local descriptors of varying size, over
parallel IP-packet stream analysis, which dynamically generates
alerts, to weather simulations, for which pressure area descriptors
are dynamically created. Previously, organizing vast numbers of
differently sized objects at runtime was only possible using parallel
reduction summations (scan) [7]. The scan-method requires mul-
tiple kernel launches: One initial kernel launch to analyze the input
data and write the number of required bytes for each data element
into global memory, followed by the scan kernels. Subsequently,
a final kernel launch is required to write the resulting data. Com-
pared to this procedure, a single call of a dynamic memory allocator
function is very likely to be more efficient in terms of programming
effort and execution time.

Although NVIDIA makes their dynamic memory allocator avail-
able for use within the CUDA toolkit, its internals remain undis-
closed. Furthermore, our tests have revealed that their current im-
plementation is unreliable under heavy load. Literature on dynamic
memory allocation on massively parallel architectures is rare. The
only published and especially for the use on GPUs optimized dy-
namic memory allocator is XMalloc [8]. Therefore, we see an ur-
gent need for further research in this area.

With this work, we want to form a solid base for the design of dy-
namic memory allocation on massively parallel architectures such
as GPUs. To achieve this, we designed and implemented Scatter-
Alloc and give detailed information about its inner structure, per-
formance and implementation. Our main contributions are:

• A discussion of necessary design goals which arise from the
architecture of current GPUs. We point out special problem
cases and state additional challenges for the implementation of
ScatterAlloc in Section 3.

• A way to adjust currently available CPU strategies for the use
on GPUs. This serves as a baseline for a direct comparison to
ScatterAlloc and forms another reliable allocator in Section 4.

• A design of the novel allocator ScatterAlloc, targeting mas-
sively parallel execution in Section 5.

• A detailed description of the implementation of ScatterAlloc
with pseudo-code examples in Section 6.

• A set of tests to evaluate the suitability of a dynamic memory
allocator for the stream processing model in Section 7.

• A comparison of the presented allocators with the allocator that
is provided with the current CUDA toolkit and XMalloc. We



show that ScatterAlloc is approximately 100 times faster than
the CUDA toolkit allocator and up to 10 times faster than XMal-
loc in Section 8.

2. RELATED WORK
Dynamic memory allocation is one of the very basic operations

in Computer Science. While a lot of work has been done on the
CPU side to gain more performance and to adapt the memory man-
agement mechanisms to newly available hardware features, only
little research has been done on the GPU side. Therefore, we sum-
marize first the most important memory allocation methods for the
traditional CPU areas in Section 2.1 and then focus on the differ-
ences between the hardware architectures, which have to be con-
sidered when building a dynamic memory management system for
the GPU, in Section 2.2.

2.1 Dynamic memory allocators on the CPU
While earlier programming languages, like for example early

versions of Fortran, supported only static memory allocation, mod-
ern programming languages support multiple allocation schemes
ranging from stack allocation to fine-tuned heap allocators pro-
vided by the programming environment itself. Besides optimized
standard methods, which can be found in modern high-level pro-
gramming languages, several researchers proposed improvements
to these methods. Doug Lea’s Malloc [13] and a fast multi-threaded
version, ptmalloc [5], are well-known examples of such algorithms.
They are currently used in the GNU C++ library. A good overview
and comaprison of such methods is given by Wilson et al. [25]. As
they discuss, the primary goal of early allocation schemes is to min-
imize memory overhead.

With the introduction of multi-core CPUs, traditional memory
allocation turned out to be a serious bottleneck when multiple cores
try to allocate memory in parallel. David Nicol showed the draw-
backs of state-of-the-art memory allocation when it comes to highly
parallel and frequent dynamic memory allocation during simula-
tions [17]. To overcome these problems, parallel heap implemen-
tations have been introduced by Häggander and Lundberg [6]. With
the Hoard system by Berger and colleagues [2] a reliable and fast
solution for multi-threaded dynamic memory allocation has been
found. These systems basically combine one global heap with per-
processor (i.e., per-thread) heaps for minimal memory consump-
tion and low synchronization costs. However, heap manipulation
in such systems often requires locks and atomic operations be-
cause threads cannot be sure on which processor they are exe-
cuted. Altering the Hoard approach leads to ’mostly lock-free mal-
loc’ [4], which requires only one heap per CPU. Multi-Processor
Restartable Critical Sections as introduced with ’mostly lock-free
malloc’, allowed a speed-up by a factor of ten for selected applica-
tions. Later, ’scalable lock-free dynamic memory allocation’ [15]
allowed the complete removal of locks. This allocator uses only
atomic operations for dynamic memory allocation and is there-
fore “immune to deadlocks regardless of scheduling policies and
provides async-signal-safety, tolerance to priority inversion, kill-
tolerance, and preemption-tolerance, without requiring any special
kernel support or incurring performance over-head” [15]. A re-
cent improvement of lock-free dynamic memory allocation can be
found in the McRT-malloc approach [9], which is designed for the
use with software transactional memory (STM). Compared to the
above-mentioned approaches, this allocator also avoids atomic op-
erations in most cases and detects balanced transactional alloca-
tions to avoid space blowup. Most recent state-of-the-art mem-
ory allocators for multi-core CPUs still use one local heap per
thread [22, 24].

All of these methods have been designed for systems with low
or medium degrees of parallelism and do not scale well to mas-
sively parallel computation as realized on modern GPUs. Many
approaches require one heap per processor or thread which can
work well for a limited number of cores. However, GPUs pro-
vide an order of magnitude more processing units than any modern
CPU, therefore one heap per processor would simply introduce too
much overhead. Furthermore, fundamental differences between the
hardware architectures prevent the direct application of the above-
mentioned methods. These differences are briefly outlined in the
next section.

2.2 GPU architecture
In contrast to CPUs, GPUs consist of stream processors. Since

stream processors heavily rely on parallelism, operations that re-
quire serialization can significantly hurt performance. This prob-
lem becomes particularly significant if more than one processor
tries to write the same memory address. In case of such memory
collisions, the extensive use of mutual exclusive locks and atomic
operations is required. A good overview over the main features
of stream architectures and their memory allocation and control
schemes is given by Ahn [1].

The degree of parallelism of modern GPUs is rarely seen, even
in other comparable stream-processor based architectures. Because
the single instruction, multiple data (SIMD) model of GPUs in fact
forces many stream processors to run the same code in parallel,
locking, as it is heavily used for CPU based dynamic memory allo-
cation methods, defines a problem. And the overhead of inter-core
communication through main memory becomes a severe bottleneck
as shown by [26] and [12].

Specialized algorithms use lock-free queues and work stealing [3]
to overcome the lack of suitable dynamic memory allocation on the
GPU. However, their overhead makes them only applicable for ap-
plications with high computational demands and low parallelism,
such as the construction of hierarchical data structures [12].

Furthermore, under certain circumstances, locks might not even
work correctly on SIMD architectures such as modern GPUs. CUDA,
for example, assigns blocks of threads to a multi processor, which
organizes their execution in so called warps. Diverging threads in
a warp are only marked inactive while the other branch executes.
Thus, threads acquiring a lock might get caught up in the inherent
busy–wait spin–lock, which can prevent the one thread holding the
lock from proceeding. Such problems are not only to be found in
the NVIDIA Tesla architecture [14], but also in Intel’s experimental
Larrabee processor [23].

To the best of our knowledge, the only for GPUs optimized allo-
cator is XMalloc [8]. To support a faster reuse of memory blocks,
XMalloc stores freed blocks in queues and serves allocation re-
quests from these queues before new memory is used. Further-
more, XMalloc introduces an optimization for SIMD architectures,
which groups memory requests that are issued concurrently to-
gether within a warp. This reduces the workload on globally shared
queues. Contrary, ScatterAlloc avoids single points of serialization
and can thus provide memory requests in constant time, indepen-
dent of the number of concurrent memory requests.

3. DESIGN GOALS
The general design goals for dynamic memory allocators are

architecture-independent: correctness, speed and little memory
consumption. To design an allocator for the GPU, we want to
build on the know-how from the field of multi-core CPU memory
allocation. In the following, we detail on the special requirements
and distinct features that have to be considered for GPUs.



3.1 Correctness
A fundamental requirement for every deterministic algorithm is

of course its correctness. A primary issue concerning the design of
a GPU allocator is that it is virtually impossible to make any as-
sumptions about scheduling on the GPU. This means that mostly
lock-free algorithms have to be used to avoid deadlocks. Conse-
quently, many well known CPU memory allocation methods drop
out at this stage.

3.2 Speed
Keeping the number of clock cycles spent with allocation and

deallocation of memory low, must be a major goal of allocators
for the GPU. However, not only the time spent on the allocation
and deallocation is important, but also how efficiently the allocated
memory can be accessed.

Memory-access performance.
One important property of current GPUs is the fact that memory

access can be extremely costly in relation to computations [14, 20].
On an Intel Core i7, data access takes about 4, 10, and 38 cycles,
for data in L1, L2, and L3 cache respectively and about 100 cycles
for accessing data in main memory [16]. On the Fermi architec-
ture, access times are, according to our own measurements, about
18, 250, and 1000 cycles for data in L1 cache, L2 cache, and global
shared memory respectively. Additionally the cache sizes on the
GPU are about one tenth of the cache sizes on a CPU, which be-
comes even more severe considering that the L2 cache on a GPU
has to serve hundreds of cores and thousands of threads. There-
fore, ScatterAlloc keeps the number of data accesses low, while it
can spend more time on complex computations.

Scalability.
A lock-free allocator usually relies on atomic operations to han-

dle concurrent allocations of multiple threads as described in Sec-
tion 2. The time it takes for such an operation to complete is pro-
portional to the number of threads accessing the same data word
in parallel. Although it is believed that a linear performance de-
crease is a good scalability for CPU-based allocators [2], it is not
for GPUs where thousands of threads might execute concurrently.
Our measurements show that, for multiple threads atomically ac-
cessing the same data word, the average access time increases with
at least 100 cycles per thread. Consequently, atomic operations on
the same data word are avoided whenever possible by ScatterAlloc.
Ultimately, a perfect allocator should be unaffected by the number
of threads concurrently allocating data and thus provide allocation
and deallocation in constant time.

Diverging execution paths.
As the GPU is based on the SIMD model, blocks of threads (in

our case CUDA-warps) can only execute in a coherent manner.
This means, that if multiple threads within a warp concurrently al-
locate memory, the best performance will be reached, if they all
execute the same code. Diverging branches are synchronized by
the warp scheduler, forcing all threads to wait for the whole warp
to finish, which can strongly reduce performance.

False sharing.
Another important issue with CPU-based allocators is false shar-

ing. False sharing means that data accessed by different processors
should not be placed in the same cache line if the data are not in-
tended to be shared. Consequently, data accessed by one processor
should be strung together to speed up the data access. Since the in-

troduction of the Fermi architecture, GPUs also cache global mem-
ory accesses, making false sharing also an issue for efficient GPU
programming. Because all threads executing on the same multipro-
cessor share the same cache, false sharing occurs between different
multiprocessors only, while cache line sharing between different
threads on the same multiprocessor can be intended.

Coalesced access.
Traditionally, data access on the GPU could only be performed

efficiently if all threads of a block accessed the data words linearly
according to their thread index, with no gaps in between, hence,
in a coalesced manner. Although this is not necessary for current
graphics cards anymore, data words accessed by adjacent threads
can be read with a single load instruction, if they are placed close
to each other in memory. If threads of the same block allocate data
at the same point in time, it is likely that these data words will
also be read or written concurrently. Thus, ScatterAlloc considers
it important that data words allocated by threads of the same block
at the same time are close to each other in memory.

3.3 Memory consumption
The lower the overall memory consumption of an allocator, the

less data has to be accessed, the more data fits into the cache, and
the more memory is free to be used by the system. Thus, a major
design goal of dynamic memory allocators is to reduce the over-
all memory consumption. This includes memory fragmentation,
which is a measure of the unusable regions between occupied mem-
ory, and furthermore the overhead of the data structures that are
used to keep track of free and used regions. To be able to formal-
ize our measures of fragmentation, we build on the assumption that
memory is split up into regions. We define the set of all regions R as
well as the functions alloc : R→N and size : R→N. alloc(r) maps
a region to the size of the memory request it has been allocated for,
or 0 if it is free. size(r) gives the actual size of a region. Based
on these functions, we can define the set of all allocated regions
A = {r ∈ R|alloc(r) 6= 0} and the set of all free regions F = R\A.

Internal fragmentation.
Internal fragmentation occurs, if the size of the allocated mem-

ory region size(r) is larger than the requested size alloc(r). This
may be necessary to meet alignment requirements of the processor,
e.g., for the Fermi architecture objects must be 16 byte aligned, or
due to the internal structures of the allocator. Internal fragmenta-
tion may also vary with the allocation pattern of the application.
We compute the internal fragmentation Finternal as the average of
relative wasted space among all allocated memory regions:

Finternal =
1
|A|
·∑

r∈A

size(r)−alloc(r)
size(r)

. (1)

External fragmentation.
External fragmentation occurs, if the available free memory is di-

vided into small chunks, which might be too small for direct use by
the application. The amount of external fragmentation is strongly
dominated by the allocator’s strategy for finding free memory re-
gions. Its value Fexternal is commonly defined as the ratio of the
largest free memory region to overall free memory:

Fexternal = 1−
max f∈F size( f )

∑r∈F size(r)
(2)

Consequently, an external fragmentation of 0 means that all avail-
able memory can be allocated in one big chunk.



Blowup.
Blowup occurs if the allocator’s memory requirements dispro-

portionally increase over time compared to the amount of allocated
memory. The reason for this behavior can only be found by ana-
lyzing the internal structure of an allocator. In most cases, blowup
is caused by the disability to reallocate previously freed memory.
Blowup can dramatically increase memory usage for certain sce-
narios and is therefore considered in the design of ScatterAlloc.

4. BASELINE: A PARALLEL LIST-BASED
ALLOCATOR

To obtain a baseline for the comparison with ScatterAlloc, we
have implemented a traditional allocation scheme based on a first-
fit algorithm on the GPU. Memory is organized in consecutive seg-
ments that each keep pointers to the previous and next segment. We
refer to this structure as the segment-list. A memory segment can
either be allocated or free. When a request is made for a new block
of memory, the list of segments is traversed until a free segment
of suitable size is found. If the size of the first fitting segment is
larger than requested, the segment is split such that one segment
then is of the appropriate size for the memory request and the other
one contains the remaining memory. The first of the two parts is
subsequently marked as allocated and returned to the caller.

To speed up the search process, we maintain a second list of free
segments so that only those are considered during the search for a
free block of memory. When a segment is allocated, it is removed
from this free-list and if a split yields a free segment, this segment
is inserted back into the list. To counter external fragmentation,
the allocator attempts to merge segments back together with their
immediate successor within the segment-list on deallocation.

For CPU allocators it is common to organize multiple heaps of
smaller size to reduce allocation time. This is well demonstrated
in numerous previous attempts [2, 4, 13, 15, 22, 24]. In an ap-
proach similar to skiplists [21], we introduce a partial ordering on
the elements of the free-list, organizing it into sub-lists that con-
tain blocks of certain sizes. A number of what we call bins each
store entry points to these sublists. The way these bins are cre-
ated and managed allows the implementation of various allocation
strategies, including strategies similar to the use of multiple smaller
heaps.

To build these data structures, management information has to be
associated with every memory block. This information consists of
a bit-field defining the current state of the block, as well as pointers
to the previous and next blocks in both, the segment-list and the
free-list. We store this information right before the actual memory
block. Dealing with a highly parallel architecture, we want to sup-
port concurrent insertion and deletion of list elements. Thus, access
to these pointers needs to be synchronized to avoid corruption.

Synchronization is also needed during the allocation process be-
cause multiple threads might try to allocate the same block of mem-
ory. If a thread identifies a suitable block of memory, it atomically
tries to set the allocated flag. If this is successful, it is free to use
the entire block or split it into two blocks.

With this functionality at hand, we have first created an allocator
similar to dlmalloc [13] by inserting free memory blocks into the
sublists according to their sizes. This enables a thread to directly
jump to a first element that potentially satisfies its demands, instead
of having to walk the entire free-list. As the individual sublists
remain connected as a whole, a thread that has not been able to
secure a block from its initial sublist will automatically run over to
the next bin, splitting up a bigger block of memory.

For a second implementation we create a fixed number of bins
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Figure 1: Overview of the data structures used in the ScatterAl-
loc: Memory is organized in super blocks which are collected
in a list. Each super block holds a fixed number of equally sized
pages, information about the usage of each page and meta in-
formation collected for regions of pages. The usage table cap-
tures the size according to which the page is split into equally
sized chunks, the counter of used chunks and a bit field to iden-
tify the used chunks. To allow for splitting the page into more
chunks than actually can be captured by the bit field in the us-
age table, an additional hierarchy of bits is placed on the begin-
ning of the page.

and assign threads according to their execution locality to these
bins. This creates a behavior similar to the Hoard system [2] and
the ‘Scalable lock-free dynamic memory allocation’-scheme [15].
We can assign all threads running on a single multi processor to the
same bin, which has a positive impact on the number of cache hits
and reduces congestion.

However, all these methods are not optimal for use on highly
parallel architectures like GPUs, as already mentioned in Section 1
and confirmed by our results in Section 7. In the next section we
therefore propose the novel design of ScatterAlloc that overcomes
the inherent problems of the methods presented here.

5. ScatterAlloc
Traditional allocation strategies are too slow to be used where a

large number of threads concurrently allocate memory. In an en-
vironment where hundreds of threads try to seize the first block
of memory that fits their needs concurrently, collisions quickly be-
come the major bottleneck of an allocator. To avoid these colli-
sions, ScatterAlloc scatters allocation requests across fixed sized
memory regions, trading fragmentation for allocation speed.

ScatterAlloc organizes its memory by splitting it into fixed sized
pages. To keep track of the free memory within a page, we employ
a page usage table. Pages are grouped together in super blocks,
which form the biggest unit of memory for ScatterAlloc. To speed-
up the search for allocable memory, we store meta data about the
fill-level of different regions within each super block. This meta
data is designed to be frequently read but rarely written in order to
reduce congestion. For an overview of the data structures and their
relations, see Figure 1.



5.1 Super blocks
On current NVIDIA GPUs, a fixed size memory pool is used to

serve dynamic memory requests. The pool’s size has to be set be-
fore a module is loaded into the context. Thus, it would currently
be sufficient to design an allocator which can manage a memory
region of a fixed size. As this behavior might change in future, we
design our allocator in such a way that it can either be used on one
big region of memory, or manage a variable number of memory
blocks which can be found at arbitrary locations in memory. This
enables ScatterAlloc to be applicable on future architectures, which
might be able to increase the size of the heap during run-time. It
is also possible to dynamically add memory to the pool manged by
ScatterAlloc on current architectures. In case the allocator is almost
out of memory, a host side alloc between two kernel launches can
be used to allocate a new region of memory which is then passed
to the allocator before the next kernel launch is executed. Accord-
ing to the common terms used for CPU allocators, we call these
coherent regions of memory assigned to the allocator super blocks.
We require all super blocks to be of equal size. If the allocator is
configured to manage a single large region of memory, we split it
up into multiple super blocks. To allow super blocks to be scattered
in memory, we organize them in a singly linked list.

5.2 Pages
To facilitate parallel, collision-free memory allocation, we split

every super block into fixed sized pages. This way, there is no
need to search through lists when allocating memory because every
thread can calculate the page offset from the size and address of
the super block. To serve memory requests, pages are split into
equally sized chunks. The chunksize on a page is set during the first
access to the page. Once this split has occurred, it remains fixed
until all chunks allocated on the page have been freed again. This
strategy clearly favors the allocation of small and similarly sized
chunks of memory. But this is actually the behavior we expect from
a program using dynamic memory allocation in a highly parallel
fashion: there will be multiple threads dealing with similar inputs,
requesting similar amounts of memory. At the same time, these
memory requests have to be small in relation to the entire available
memory, because otherwise the system would run out of memory
immediately.

To keep track of the chunks within a page, we facilitate a page
usage table. Every entry in the page usage table consists of three
values: the chunk size, the number of allocated chunks, and a bit-
field. In this bit-field, each bit represents a single chunk of mem-
ory. A high bit means that the associated chunk of memory is in
use, while a low bit indicates a free chunk. We require atomic op-
erations and fast bit operators on this bit-field for ScatterAlloc to
work efficiently. However, atomic operations are generally only
supported for 32 or 64 bit words, with bitwise atomic operations
only available on 32 bit words. Hence, the bit-field is 32 bit long in
our current implementation. To support splitting a page into more
than 32 chunks of memory and to handle smaller memory requests
without a high amount of internal fragmentation, we introduce a
second hierarchy level: On the page itself, we place up to 32 addi-
tional bit-fields, one linked to each bit in the page usage table. This
way, we support splitting a page into up to 322 = 1024 chunks.

5.3 Hashing
The key ability for a fast allocator on the GPU is to avoid colli-

sions. If multiple threads try to allocate the same chunk of memory,
performance can drop quickly. To avoid collisions and to quickly
find suitable pages for allocation, we rely on hashing. While previ-
ous approaches use only the thread identifier for their hash function

to determine a local heap, e.g. proposed by Larson et al. [11], our
hash function fulfills additional requirements:
• When yielding a page, it seeks to split the page into chunks of

the same size as the memory request. In this way, a free chunk
on the page can be used and internal fragmentation will stay
low.

• Threads running on the same multiprocessor aim for allocating
memory side by side so that the cache utilization is higher.

• For our implementation in CUDA, threads within the same warp
aspire to allocate their data adjoined as possible, as they will
likely access data coherently.

To build the hash-function, we use the requested memory size
and information about the location of the threads’ execution (mul-
tiprocessor id). Using multiplicative hashing [10] we control the
influence of the two factors, when determining a suitable page p:

p =
(
Srequested · kS +mp · kmp

)
mod SP, (3)

where Srequested represents the requested memory size, mp stands
for the multiprocessor id, and SP denotes the number of pages
within the super block. The factors kS and kmp can be used to dis-
tribute the access across the entire super block or to determine a
local offset for the data. If we choose kS to be a large, possibly a
prime number, it is more likely that pages will be found which have
been split with the same chunk size. Thus, internal fragmentation
is kept low. A small value for kS will cause little scattering of simi-
larly sized memory requests. In combination with a large kmp, data
allocated by the same multiprocessor will be allocated close to each
other. Thus, cache hits are more likely. However, in this case dif-
ferently sized chunks will be placed on the same page, increasing
internal fragmentation. The optimal choice depends on the usage
pattern of the application.

In case the determined page is already full, we search for a free
chunk in subsequent pages, which will introduce local clustering.
This strategy results in better cache-utilization when searching for
free pages, while the aforementioned considerations of either well
matching chunk size or similar multiprocessor id also apply.

5.4 Meta Data
To speed up the search for free suitable chunks, we introduce

a two level hierarchy of meta data. Meta data is read during each
memory request, while it is only written occasionally. Our allocator
always keeps a pointer to the currently active super block. Only if
the super block reaches a certain fill level, or a memory request
cannot be handled by the super block, the allocator proceeds to the
next super block in the list. As a thread proceeds to the next super
block, it updates the active super block pointer.

To quickly reject memory regions which are unlikely to contain
suitable free chunks, we divide each super block into equally sized
regions. For every region, we keep information about how many
pages are full. If an allocation request fills up one page, it increases
the counter for the region the page lies in. If a region is about to
run out of free pages, memory requests are forwarded to the next
region. As it takes some time for threads to report that pages are
full, we already proceed to the next region when 90% of the pages
are full. If a chunk of a full page is freed, the region counter is
decreased, keeping the meta information accurate.

The available space within a region plays an important role in
reactivating super blocks. Threads which free a chunk on a non-
active super block randomly choose to set this super block as the
active super block. The likelihood that this update is performed
increases with decreasing fill-level. This helps to avoid memory
blowup, as it allows for super blocks to be reused.



6. IMPLEMENTATION
To discuss the implementation details of our allocation strategy,

we provide pseudo code of ScatterAlloc’s allocation and free meth-
ods. We require the target architecture to support atomic operations
on global memory and efficient bit operators, as, e.g., provided by
the current CUDA C programming language.

6.1 Alloc
The pseudo code for ScatterAlloc’s allocation algorithm is split

up in two functions: alloc and tryUsePage. Note that we omit the
steps for placing more than 32 chunks on a single page, as they
are very similar to placing only 32 chunks per page. The only dif-
ference is another hierarchical level, for which the bits in the page
usage table are used to indicate that all associated 32 chunks of the
second hierarchy are in use.

To allow placing smaller requests in bigger chunks, we intro-
duce a multiplicative factor max_frag (see alloc line 3) to control
how much space is allowed to be left empty between two adjacent
chunks on a page. This factor is directly related to the maximum
internal fragmentation.

While searching for a suitable page, three situations can occur:

• If the page’s chunk size is either too small or too big to be
used for the current request, we move on to the next page
(alloc line 26).

• If the page’s chunk size fits the current request, we try to use
the page (alloc line 11-14).

• If the page is not yet in use, the page’s chunk size is marked
as zero. In this case, we use an atomic compare-and-swap
with the goal to set the chunk size of the page according to
our needs (alloc line 16-24). In case no other thread has set it
before, the page can be used for allocation. If another thread
set the chunk size in the meanwhile, it is still possible that
the set chunk size fits the current request.

If ScatterAlloc identifies a page to be used for the current request,
we first increase the fill level of the page to see if there is space for
another chunk (tryUsePage line 2). In this way, we check if there
is an available spot on the page concurrently with reserving a spot.
After this step has been performed successfully, it is certain that the
request will be served on that page. Without this counter, multiple
threads might fight for the same spot. Note that this is the only point
of serialization which depends on the number of threads trying to
allocate memory concurrently. Nevertheless, not many threads will
be directed to the same page as the hash-function will scatter their
requests to multiple pages and full sections will be avoided due to
the meta data structure.

After increasing the fill-level for the page, ScatterAlloc needs to
determine which spot should be used. To do that efficiently, we
use the bit-field of the page usage table (tryUsePage line 8-19).
We start by estimating a free spot using the thread’s lane id (thread
index within its warp). This strategy is a good choice, because mul-
tiple threads of the same warp allocating equally sized data will be
forwarded to the same page. In case all chunks are free, access-
ing them will result in coalesced memory accesses. If a chunk is
already in use, we use the bit-field to quickly determine the next
free spot as outlined in tryUsePage line 14-19. Essentially, we use
bit-shifting in combination with CUDA’s __ffs function to deter-
mine the closest free chunk on the page. Thus, we are able to find
a free spot without the necessity to loop through the bit-field and
mark the next free spot.

As long as our heuristic works well, there will be few or no col-
lisions and a suitable page will be found quickly. In this case, an

Function alloc(Superblock,Sreq)

1 p← hash(Sreq,mp)
33 Smax ← Sreq ·max_frag
4 while tried not all regions do
5 region← p/ regionsize
6 if region filllevel ≤ regionsize ·9/10 then
7 while p is in region do
8 page← Superblock→p
9 Schunk ← page→chunksize

1111 if Schunk ≥ Sreq and Schunk ≤ Smax then
12 loc← tryUsePage(page, Schunk)
1414 if loc 6= 0 then return loc
1516 else if Schunk = 0 then

// page is free so try setting Schunk

17 Schunk ← atomCAS(page→chunksize, 0, Sreq)
18 if Schunk = 0 then

// use the new page

19 loc← tryUsePage(page, Sreq)
20 if loc 6= 0 then return loc
21 else if Schunk ≥ Sreq and Schunk ≤ smax then

// someone else acquired the page,

// but we can also use it

22 loc← tryUsePage(page, Schunk)
2424 if loc 6= 0 then return loc

2626 p← p + 1

27 else
// try next region instead

28 p← (region +1)·regionsize;

29 return 0

Function tryUsePage(page,Schunk)

22 filllevel← atomAdd(page→count, 1)
3 spots← calcChunksOnPage(Schunk)
4 if filllevel < spots then
5 if filllevel + 1 = spots then
6 atomAdd(page→region, 1)

88 spot← laneId % spots
9 while true do

10 mask← (1 « spot)
11 old← atomOr(page→bitmask, mask)

// if the spot is free use it

12 if old & mask = 0 then break
// bit magic giving us the next free spot

1414 mask = old » (spot + 1)
15 mask |= old « (spots - (spot + 1) )
16 mask &= (1 « spots) - 1
17 step← __ffs( mask)
1919 spot = (spot + step) % spots

20 return page→data + spot ·Schunk

// this page is full

21 atomSub(page→count, 1)
22 return 0



allocation request can be handled within a minimum of five global
memory operations (determining the active super block, checking
the region status, comparing the page’s chunk size, increasing the
fill-level, and marking the spot). If multiple threads try to allocate
data at the same time, most of the information will already be in the
cache and the request can be handled faster. We also benefit from
the cache in finding a free section and searching through the pages,
as this data occupies a continuous region of memory.

6.2 Free
Freeing a chunk of memory is simpler than allocating, as demon-

strated by the pseudo code for free. Given that we already know
which super block the chunk belongs to, a few address and offset
computations (free line 2-7) are sufficient to determine the bit that
has to be cleared to mark the chunk as free and the counter that
has to be decremented to remove the reservation of the spot on the
page.

In case a page has become completely free, ScatterAlloc resets
the way the page has been split by setting the chunk size in the page
usage table to zero. To avoid race conditions in this situation, we
have to lock the page, so that no other thread will try to allocate
memory on this page with an incorrect chunk size. We implement
this lock by atomically setting the page’s fill level counter to a max-
imum if it is still free (free line 12). Now, if a different thread tries
to reserve a spot on the page, it will fail and we can safely reset
the chunk size of the page. This functionality also justifies using
this counter instead of using the bit-fields only, which would not be
sufficient to resolve the concurrency issue if secondary hierarchies
of bit-fields on a page are used.

Function free(SuperBlock,pointer)

22 p← (pointer- Superblock→data)/pagesize
3 page← Superblock→p
4 Schunk ← page→chunksize
5 spot← (pointer - page→data)/Schunk
77 mask← (1 « spot)
// mark chunk free

8 atomAnd(page→bitmask, mask)

// reduce counter

9 count← atomSub(page→count, 1)
10 if count = 1 then

// this page now got free, try ’locking’ it

1212 count = atomCAS(page→count, 0, pagesize)
13 if count = 0 then
14 page→chunksize← 0
15 __threadfence()

// ’unlock’ it

16 atomSub(page→count, pagesize)

The provided pseudo code shows that two reads from global
memory (data offset and chunk size) and two atomic operations
on global memory are needed to free a chunk. The only source for
congestion is formed by the two atomic operations. As the number
of chunks on a page is limited, the bit-field operation will not cause
a lot of congestion. The operation on the fill count may be subject
to more congestion, as it is also atomically altered during the al-
location process. Again, we can argue that the number of threads
trying to request a chunk on a single page will still be low due to
the use of a hash-function. Thus, the free operation is generally
very efficient, as also shown in Section 7.

The only remaining question is how to determine the super block

in which the chunk falls. In case of a single big allocator-managed
block, a simple address calculation using one division is sufficient,
because all super blocks lie next to each other in memory. When
multiple separate super blocks should be used, a simple array with
information about all available super blocks is all that is addition-
ally required. While searching through this small array the L1
cache will be fully utilized and in an optimal case, the super block
will be found about as fast as if we would only read a single value
from global memory.

6.3 Large Data Requests
Up to now, we have described only requests that fit on a single

page. In case a request is bigger than a page, we can serve this re-
quest by allocating multiple pages. As the used memory is strongly
scattered within a super block, we forward requests that are bigger
than the page size to super blocks that are deliberately reserved for
this purpose. In this super block, we search for a sufficient num-
ber of consecutive free pages. Then we try to reserve these pages
by setting all chunk size fields of each page’s usage table to the
requested size. This will prohibit any other thread from using the
page in further memory requests. If in the meantime another thread
tries to acquire one of the pages that we want to use, we reset all
already reserved pages and restart the search. Note that such big
data requests will not be made by a large number of threads, as the
system would run out of memory very quickly.

7. EVALUATION
In this section we describe a set of tests to analyze the perfor-

mance of dynamic memory allocators designed for highly parallel
architectures such as GPUs. We build our tests in compliance with
the design goals specified in Section 3. These benchmarks measure
the allocation and free performance of the allocators, data access
performance, and compute additional information such as fragmen-
tation and overhead.

Operator performance.
The first interesting factor is the time it takes to fulfill an alloc

or free request. This factor strongly depends on the internal state
of the allocator (the allocation history and assigned memory), the
number of threads being executed, the number of threads concur-
rently allocating/freeing data and the size of the requested memory.

To construct a realistic and at the same time challenging sce-
nario, we test the allocators performance across multiple kernel
calls. A thread can either allocate memory or free memory that it
has allocated before. The probability that it does so is given by the
test parameters palloc and p f ree. After a couple of kernel calls, the
ratio between allocated and free memory will approach a constant.
Subsequently to this initial warm-up phase, we measure the average
number of cycles required for a single alloc or free. Furthermore,
the variance in cycles between different allocation requests is of in-
terest. The coefficient of variation can be seen as a characteristic
value of the allocator’s homogeneity when it comes to diverging
execution paths. To simulate different load characteristics, we in-
crease the number of threads until the device’s capacity is reached
or the allocator runs out of memory. To capture the influence of the
requested memory sizes, they are drawn from an uniform distribu-
tion.

Data access performance.
Besides the time for allocating/freeing memory, the time it takes

to access the allocated memory influences the overall performance



of a program as well. It strongly depends on the access pattern
and cache-utilization. We extend the previously designed test to
also measure how long it takes each thread to access the memory it
allocated.

Meta Information.
Not only the raw performance measures give information about

an allocator’s performance. Internal fragmentation, external frag-
mentation and memory overhead of the required data structures are
also important. Using the previously described test, we can mea-
sure these factors to analyze the allocator’s performance in different
situations according to their definition as given in Section 3.

8. RESULTS
To compare the performance of ScatterAlloc with state-of-the-art

CPU allocators on current GPU hardware, we have implemented
two list based allocators as described in Section 4 using CUDA.
Thus, we can also compare their performance directly with the al-
locator provided with the CUDA toolkit 4.0 and XMalloc [8]. Our
test-system is equipped with an NVIDIA Quadro 6000 with 6GB
of graphics memory, of which we assign 16MB to each of the al-
locators. The size list allocator uses ten bins for speeding up the
search for differently sized data blocks. The mp lists allocator sorts
free memory blocks in ten bins per multiprocessor, which makes
for an overall bin-count of 140. For our allocator, we use two ran-
domly selected prime numbers kS = 38183 and kmp = 17497 as the
respective parameters of our hash-function, a pagesize of 4kB, and
a super block size of 8 MB. According to our tests, the performance
of ScatterAlloc is not sensitive to the choice of kS and kmp, as long
as they are large prime numbers.

Figure 3 shows the performance of the alloc and free operators
for an increasing number of threads, with palloc = p f ree = 0.75. As
the purpose of this test is to assess the impact of concurrent alloca-
tion, we stopped the tests after exceeding the point where the GPU
was fully utilized (at about 15000 threads). One can clearly see,
that the performance of the list based allocators, XMalloc without
SIMD optimization, and the CUDA toolkit allocator strongly de-
creases with an increasing number of threads. XMalloc with SIMD
optimization can reduce the number of memory request served via
the global queues and can avoid a performance decrease until ap-
proximately 2000 threads are concurrently allocating memory. The
performance of ScatterAlloc remains almost constant as the thread
count increases. At full utilization of the GPU, memory allocation
using ScatterAlloc is about 100 times faster than the CUDA toolkit
allocator and up to 10 times faster than XMalloc with SIMD op-
timization. Our allocator’s performance varies with the requested
memory size, due to its page based strategy. If the queues in XMal-
loc become empty, allocation takes a lot longer, which causes the
variation in XMalloc’s performance. The other allocators show lit-
tle variance for their allocation time. Comparing the two list
based allocators, shows that distributing memory requests of dif-
ferent multiprocessors to different memory-locations yields an in-
crease in performance of about 1000%.

To assess ScatterAlloc’s memory consumption characteristics,
we compare it to list-based allocators. They work similar to alloca-
tors for CPUs, which have been tuned for low memory consump-
tion and fragmentation. Figure 4 shows the internal and external
fragmentation measured for the list based allocators and Scatter-
Alloc for different distributions of allocation request sizes. We set
palloc = p f ree = 0.6, the mean of the size-distribution to 512 bytes,
and varied the extent of the distribution from zero to 896 bytes. The
performance of the tested allocators was constant for all distribu-
tions and equaled the measurements reported in Figure 3. Internal
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Figure 2: Temporal development of ScatterAlloc. 16384 threads
keep requesting memory chunks between 128 and 160 bytes. As
the first super block fills up, the time needed for finding a free
chunk starts to vary (CV) and thus increases. After a fill level
of about 80% is reached, the next super block is opened up
and performance recovers. Internal fragmentation is very low,
while the external fragmentation is linked to allocation speed.
The relative overhead of ScatterAlloc stays below 1% after a
reasonable fill level has been reached.

fragmentation was very low for all allocators, indicating that Scat-
terAlloc finds good target candidates most of the time. ScatterAlloc
as well as the mp lists allocator trade external fragmentation for in-
creased allocation performance. Thus, it is not surprising that the
external fragmentation of these allocators is very high. ScatterAlloc
produces more cache hits than the list based allocators, resulting in
faster access. As the latency for the L1 cache is about 18 cycles
and about 250 cycles for the L2 cache, the results indicate that all
three allocators deliver memory in a cache friendly way.

Figure 2 shows the temporal development of ScatterAlloc for
16384 threads, two super blocks of 8MB, uniformly distributed al-
location requests between 128 and 160 bytes, and with palloc =
0.05 and p f ree = 0. While the first super block fills up, the time
needed for finding a free spot increases from 10000 to 25000 cy-
cles. The coefficient of variation (CV) for the allocation time also
increases, which indicates that for some threads it becomes more
difficult to find a free spot. When there is hardly any space left for
allocation, the external fragmentation drops, and the time spent on
a single allocation request reaches its maximum. If the allocation
request can not be served by the first super block, the next super
block is opened up and the allocation time drops below 10000 cy-
cles again. The relative overhead of the allocator for a reasonable
fill level is below 1%. As the overhead is constant per super block,
the relative overhead decreases with increasing fill-level.

For memory requests larger than the used page size, ScatterAlloc
also shows a linear performance decrease with increasing number
of threads. For a single thread allocating two pages takes approxi-
mately 8000 cycles. For every additional thread allocating data, the
average performance decreases with approximately 3000 cycles.
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9. CONCLUSION
We have discussed several necessary design goals which have to

be met by efficient dynamic memory allocation schemes for mas-
sively parallel computing device architectures. In this paper, we
have focused on GPUs, which currently provide the highest degree
of parallelism on a single device. The special needs of thousands
of GPU-threads, which may concurrently need to allocate mem-
ory, require the implementation of new dynamic memory alloca-
tions schemes. We described how established CPU-based alloca-
tion methods can efficiently be tailored to the GPU. However, we
also show that these methods are still too slow to meet the demands
of massively parallel programs. Hence, we have implemented our
own allocator, ScatterAlloc, which turns out to be more reliable
and about 100 times faster than the built-in CUDA memory alloca-
tion function and up to 10 times faster than the to our work related
XMalloc. ScatterAlloc is open source and can be downloaded from
our project web page: www.icg.tugraz.at/project/mvp.
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