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ABSTRACT
Real-time three-dimensional acquisition of real-world scenes
has many important applications in computer graphics, com-
puter vision and human-computer interaction. Inexpensive
depth sensors such as the Microsoft Kinect allow to lever-
age the development of such applications. However, this
technology is still relatively recent, and no detailed studies
on its scalability to dense and view-independent acquisition
have been reported. This paper addresses the question of
what can be done with a larger number of Kinects used
simultaneously. We describe an interference-reducing phys-
ical setup, a calibration procedure and an extension to the
KinectFusion algorithm, which allows to produce high qual-
ity volumetric reconstructions from multiple Kinects whilst
overcoming systematic errors in the depth measurements.
We also report on enhancing image based visual hull ren-
dering by depth measurements, and compare the results to
KinectFusion. Our system provides practical insight into
achievable spatial and radial range and into bandwidth re-
quirements for depth data acquisition. Finally, we present a
number of practical applications of our system.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: System archi-
tectures; D.4.7 [Organization and Design]: Interactive
systems; C.4 [Performance of Systems]: Performance at-
tributes
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1. INTRODUCTION
The Microsoft Kinect has profoundly changed the possi-

bilities of sensing for games or Virtual Reality applications.
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Previously, inexpensive and thus scalable sensing technol-
ogy was primarily based on affordable digital video cam-
eras, making computationally expensive image processing
necessary. With a Kinect device, direct depth sensing and
video capture immediately deliver rich information on the
scene structure without intensive processing at a competi-
tive price. Not surprisingly, many researchers have taken
advantage of this opportunity, and we see a proliferation of
research projects that rely on this technology.

A single Kinect can deliver enough information to let a
user control a character in a video game with body move-
ments or resolve real time occlusion of video-see through
Augmented Reality (AR) applications. However, the scope
of potential applications is ultimately limited by the view-
dependent nature of the sensor and the fact that it samples
surfaces at a finite resolution. Scalability by using data from
multiple Kinects is therefore a prime research topic for im-
proving the quality of acquisition and reconstruction with
such a device.

For applications that demand fully view-independent and
dense surface reconstruction of dynamic scenes in real time,
multiple Kinects can be clustered and their output com-
bined. This approach is still inexpensive, at least for profes-
sional applications. However, building such a setup is not
necessarily trivial, as a number of conceptual and techni-
cal challenges in the system design must be overcome. In
this paper, we report on the construction and evaluation
of OmniKinect, a system using multiple Kinects for real-
time dense volumetric acquisition. We describe the chal-
lenges in making such a system work in practice. In partic-
ular, we describe the efforts taken in making our hardware
setup flexible and scalable. We also report on an improve-
ment technique to allow real-time fusion of sensor readings
from multiple Kinects, and on an image-based rendering ap-
proach enhanced by depth information. Both algorithms
are versatile tools for the processing of combined RGB-D
data. Finally, we illustrate our work with several applica-
tion examples, which previously would have been very hard
or impossible to achieve.

2. RELATED WORK
Multi-view stereo systems: Before affordable depth

sensors became available, systems with multiple video cam-
eras were used to reconstruct and render dynamic 3D scenes.
Early approaches extended the concept of feature-based stereo
matching to multiple cameras [5]. GPU-based implementa-
tions work by, for example, using plane sweep algorithms [22]



to achieve interactive frame rates.
In many applications, only a defined foreground object is

of interest. If the foreground object or the background can
be segmented in the multiple camera images, shape-from-
silhouette algorithms can be used to reconstruct a coarse
hull of the object fast [2]. GPU-based implementations can
speed up the process considerably [10]. For applications that
intend to render the reconstructed object without an explicit
3D model, image-based visual hull (IBVH) rendering [13]
circumvents the explicit reconstruction of a 3D mesh or voxel
grid by directly computing a depth map of the scene object
from the desired viewpoint. A similar approach is used for
3D TV based on camera arrays [14].

Single and multi-depth sensor systems: The capa-
bilities of the Microsoft Kinect have been already explored
for a variety of applications. For example, a single Kinect
already enables high-quality real-time human pose estima-
tion [18]. Kinect-based body scanning [19] also enables vir-
tual try-on applications at low costs. Newcombe et al. have
shown with their work on KinectFusion [15] that dense volu-
metric reconstructions can be created in real time. Because
the Kinect is so inexpensive, combining multiple devices has
also been investigated for different research projects. For
example, Wilson et.al. [21] and Berger et.al. [1] use up to
four depth sensors to monitor a room. Both ensure that the
reconstruction light patterns do not overlap, to avoid inter-
ferences of the structures light patterns emitted by multiple
sensors. Maimone and Fuchs [11] propose advanced hole
filling and meshing techniques to use a multi-Kinect setup
for telepresence applications. Other approaches use differ-
ent modulation frequencies per camera [8, 6], which is not
possible when using Kinect depth sensors.

The problem of overlapping reconstruction light pattern
has been solved by Maimone et.al. [12] and Butler et.al. [3]
with a similar approach. Letting the whole RGB-D camera
vibrate at a relatively high frequency blurs the light pat-
tern for other, concurrently capturing sensors. The rigid
connection of the vibrating sensor and the light pattern sup-
ports a clear reconstruction without interferences from other
Kinects. In OmniKinect, we altered this approach slightly
to gain more flexibility, as detailed in Section 3.

The FreeCam system [9] combines color cameras and depth
cameras in a system for free-viewpoint rendering. They use
a multi-camera rig instead of a full capturing room.

3. OMNIKINECT SYSTEM
The OmniKinect system provides a way to capture, record

and stream information using a multiple Kinect sensors in-
frastructure, for both static or dynamic sensors. We propose
a hardware setup and a list of software tools that can be used
for a large number of applications. Our software tools in-
clude a set of basic capturing tools (record, filter, export)
and a set of high level software components (tracking, visual
hull rendering), which have been optimized for this specific
system.

Setup overview: Our basic setup consists of an ex-
tensible, ceiling mounted aluminum frame with rigidly fixed
vertical rods at regular distances. We have attached Kinect
for Windows devices to the rods with stiffened foot joints.
To reduce interferences between the Kinects, the rods are
equipped with vibrators. In contrast to previous work [12,
3], we do not mount the vibrators directly onto the Kinects
but on the supporting structure. This has various advan-

tages: First, we do not have to disassemble the Kinects and
demount their foots to mount the vibrators at a center po-
sition and ensure a stiff mounting. We have also tried a
mounting on top of the Kinect, which revealed to be hard
to control and to mount because of the bent shape of the
Kinect and which produces much more image blurring than
in our setup. Second, we can adjust and fine-tune the vi-
bration amplitude by the position of the Kinect. Since the
rods are not mounted on the floor, they vibrate at a higher
amplitude near to their end/bottom, where the vibrator is
mounted. The vibrator frequency can be controlled by an
adjustable power supply.

Currently, our setup uses eight vibrating rods. Additional
rods can be inserted with just a few simple steps in less than
five minutes. To reduce clutter and to allow defined lighting
conditions, we have surrounded the setup by two layers of
curtains. We have measured the light filter effect of each
curtain and can adjust the layers to reduce the incoming
light by approximately 25% (one layer) or 50% (two layers).
Figure 1(a) shows a schematic illustration of our setup and
Figure 1(b) shows the current implementation of this setup.

Mounting: We use 1400mm long, 40 × 40mm profile
8 pieces from item Industrietechnik GmbH (http://www.
item24.de) as vertical rods on a 3450 × 3600mmm ceiling
mounted frame. The rods are mounted by using right-angled
butt-fastening with T-slot nuts in the ceiling mount, to allow
a rigid but slightly moveable connection for the vibration.
Figure 1(a) shows the details for this approach. It is also
possible to move one additional non-vibrating Kinect freely,
as the reconstruction patterns of all mounted Kinects are
blurred out by the Maimone/Butler method.

Vibrators and frequency control: Maimone et al. [12]
do not give a lot of details for their choice of vibrators, hence
we have experimented in the same way as Butler et al. [3]
with different engines and offset weights to gain the optimal
result. We finally chose an Igarashi N2738-51 12V motor
with max. 14800rpm (idle running), 0.90Ncm torque and
max. 11.8W output, a grub screw shaft connector, a 10g
item “T-slot nut 8 St M8” as offset weight and hot glue as
safety fixation. The engine’s shaft connector is screwed into
the thread of the T-nut. The vibrators are mounted with
hot glue and tape to the vertical rods.

All vibrators are driven by a parallel circuit at slightly dif-
ferent frequencies, due to different cable lengths. In the final
setup, we operate the vibrators between 7200 and 10200rpm,
which corresponds to a vibration frequency for each motor
between 120 and 170Hz. The final frequency adjustment
has to be done manually, to reduce randomly occurring res-
onances with the mounting and therefore blurry RGB images
for certain Kinects. Usually, 150Hz produces no disturbing
resonances for our setup. Note that we use a higher fre-
quency than proposed in [3], due to our vibrator mounting.
We cannot measure the absorption caused by the vertical
rods. Therefore we assume that the actual Kinect vibra-
tion in our setup is approximately at the same frequency as
proposed by Butler et al. [3] (60− 80Hz).

Display device: To allow real-time visual feedback for
various applications, we use a large TV LCD screen display,
which can be freely positioned within our setup.

Control unit: As a control unit, we use an off-the-shelf
PC with an ASUS Sabertooth X58 mainboard (two on-board
USB 2.0 controllers and one USB 3.0 controller), an Intel
Core i7 980X processor, 16 GB RAM, an NVIDA Quadro

http://www.item24.de
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Figure 1: Plan views (a) and 3D overview (b) of our OmniKinect setup. In (a), vibrating Kinects are marked
green and not vibrating Kinects red.

6000 graphics card and four additional VIA USB 3.0 con-
trollers. We also use powered USB extenders. Note that for
the setup of multiple Kinects, only the number of physical
USB controller chips is important and not the number of
USB ports. With this system, we can successfully operate
12 Kinects if only the RGB or the depth stream is used and
7 Kinects if both streams are used. This is mainly due to
the limited bandwidth of the mainboard’s south-bridge con-
troller. As driver, we can use either the Microsoft Kinect
SDK Driver, or, as for most of our example applications,
the OpenNI (http://openni.org) PrimeSense Driver.

Calibration: We considered intrinsic, extrinsic, and
depth calibration parameters.

As intrinsic camera parameters, we use the values given in
the Microsoft Kinect SDK. However, for most of our target
applications, we also need an initial extrinsic camera cali-
bration for each Kinect.

We obtain extrinsic camera parameters using a 1300mm
high calibration target, shown in Figure 2 with StbTracker [20]
targets. Each of the target’s 3 sides (400 × 500mm) has 4
marker. The back-projection error for this target is in the
sub-pixel range and can therefore be neglected.

The external calibration is computed on the RGB camera
image. The depth image is transformed into the coordinate
system of the RGB image by using the static transformation
given by the OpenNI or Microsoft Kinect SDK.

Additionally, we provide a method to overcome depth
inaccuracies between the Kinects. Each Kinect generates
slightly different depth values, which can lead to holes or
overlaps for the resulting reconstructions. For applications
that require highly accurate multi-depth measurements, we
perform an additional inter-Kinect depth calibration step
using a red sphere (Ø120mm), which is moved through the
reconstruction volume (Figure 2 (c)). This sphere is seg-
mented in the RGB image stream, and by mapping the
depth stream onto the RGB stream also its depth values
are obtained. Relying on the extrinsic and intrinsic cali-
bration of the statically mounted cameras, the sphere’s po-
sition in the room is triangulated. For each Kinect, the
depth error derr for one measurement is computed, taking
the difference between the Kinect’s estimated depth value
din and the depth value obtained by the triangulated po-
sition of the sphere. After estimating depth errors for the
entire calibration sequence, we fit a three dimensional poly-

(a) (b)

(c)

Figure 2: The StbTracker calibration target (1300×
400×500mm) to gain initial extrinsic camera parame-
ters (a) and the initial calibration view (b) showing
the coordinate frame center for one example con-
figuration using nine Kinects. (c) shows a point
cloud rendering of the depth calibration target be-
fore (left) and after (right) correction with the cam-
era viewing rays (white lines).

nomial function ferr (with the pixel coordinates px, py, and
din as input) to the depth errors:

ferr(px, py, din) =
∑
x,y,z

pxx · pyy · dzin · cx,y,z
!
= derr, (1)

with the exponents x, y, z running from zero to a max-
imum degree of four. According to our measurements, a
maximum exponent of 1 for x, 1 for y, and 3 for depth works
already sufficiently well and does not suffer from over-fitting.
The polynomial coefficients cx,y,z are obtained by an SVD
decomposition and stored in a calibration file. Using the co-

http://openni.org


efficients the estimated depth error for unseen inputs can be
computed efficiently. Adding this estimate to the reported
depth value of the Kinect yields the corrected depth value
dout = din + derr. Using a single 3D polynomial guarantees
a smooth transaction between neighboring locations.

Note that this approach needs to be carried out only once,
even if the setup is changed slightly, as the depth calibra-
tion is obtained for each individual Kinect and it is only
parametrized by the local pixel coordinates and the depth
estimate. In principle, it would be possible to mount such
spheres statically in our setup and to evaluate their position
continuously. However, this does not seem to be necessary,
as the depth error is not time varying. Additionally, such a
setup would significantly reduce the available leeway.

Recording and playback: We use the OpenNI recorder
and player feature to record or play back a sequence for each
Kinect. Thereby, the maximum movement speed of objects
is limited by the capture rate of the depth sensor, which is
currently 30 frames per second.

Costs: Including all Kinects, the PC, the mounting and
the motors, our whole system can be built with less than
5000 USD.

4. HIGH LEVEL COMPONENTS

4.1 OmniKinect fusion
Our experiments have shown that a straight forward fu-

sion of depth maps from different sources is not possible,
mainly due to the variations in the depth map accuracy be-
tween different Kinects. The user could use our extended
polynomial calibration method from Section 3. However,
this method might not always be feasible because of sparsely
overlapping field-of-views within the sensor arrangement and
the generally high time-effort for the calibration procedure.
Therefore, we have extended the KinectFusion algorithm
presented by Newcombe et al. [15] to work properly also
with simultaneous uncorrected input streams from multi-
ple Kinects. This approach uses only an initial extrinsic
pose estimation of the cameras. We introduce an additional
step for the algorithm as shown in Figure 3, which uses a
smoothed histogram volume of truncated signed distance
functions (TSDF) [4] to filter outlier measurements of the
signed distance field before a temporal smoothing. In this
way, persistent outliers due to variations in the registered
pose or depth accuracies are removed, yielding a more robust
estimate of the surface generating a complete and accurate
reconstruction of the observed volume.
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Figure 3: Overall system workflow for the modified
KinectFusion algorithm [15] to support multiple si-
multaneous Kinects with different inaccuracies. The
additional step is marked as red center square.

In our technique, we introduce a new volume consisting of
a discrete histogram for the TSDF per voxel. We calculate
the TSDF similar to Newcombe et al. with a ramp length of

±µ . The true surface is assumed to lie within this interval.
Therefore, the TSDF fRk (v, d) at a voxel v for device d with
a distance η to the measured depth is given as

fRk (v, d) = Ψ(η) =

{
min(1, η

µ
) if η ≥ −µ

null otherwise.
(2)

Ψ(η) lies in the interval [−1, 1] and is positive in free space,
negative behind the surface. Instead of a direct weighted
integration into the TSDF volume, we count the values of
Ψ(η) from each depth map at a voxel v in one histogram
Θ(v) per voxel and increment the corresponding histogram
bin with λ:

Θi(v) = Θi(v) + λ, λ = 1
i =

⌊
(fRk (v, d) + 1) ∗ K

2
+ 0.5

⌋
.

(3)

The number of bins K can be freely chosen and defines
another level of under-sampling for the TSDF. To allow a
good coverage of zero-crossings, it is sufficient to choose
this value as a small odd number. During our experiments,
K = 5, 7, 9, 11 provided good results. Because of this dis-
cretization step, the histogram transformation behaves like
an infinite impulse response (IIR) filter. The more bins are
used for the histogram, the better edges and details are rep-
resented.

After the TSDFs of all input devices have been evalu-
ated, each histogram bin is filtered separately with a three-
dimensional bilateral filter to obtain a discontinuity preserv-
ing TSDF histogram volume with reduced noise per layer θi
of Θ(v) between the measurements of the separate Kinects:

θi(v) =
1

W

∑
q∈V

Nσs(‖v − q‖2)Nσr (‖θi(v)− θi(q)‖2)θi(q),

(4)
for each voxel v = (x, y, z)T in the volume domain v ∈
V ∈ R3, Nσ = exp(−t2σ−2) (spatial domain Nσs and inte-
sity range domain Nσr ) and W as a normalization constant.
Note, that this filter is very similar to the bilateral depth
map filter of [17] in R2, but performed in R3 at this point.
A subsequent maximum search per voxel histogram gives a
robust estimate of the underlying TSDF volume value be-
cause it acts like a majority vote decision or IIR filter.

The histogram bins Θi(v) are normalized to the upper
limit of the used data structure for the filter step. The actual
value of the histogram bins does not influence the following
steps, because we transform the index of the maximum of
these histograms back into a regular TSDF volume ψ, using
weighted averaging for this integration. Thereby, we use the
inverse transform to Equation 3:

ψ(v) = −1− 1−2α
K

,with K 6= 0 and
α = arg max

i
(θi(v)) (5)

We integrate that value into the final TSDF volume FRk (v)
with weighted averaging by storing a weightWk(v) with each
value:

FRk (v) =
Wk−1(v)Fk−1(v)+WRk

(v)ψ(v)

Wk−1(v)+WRk
(v)

Wk(v) = Wk−1(v) +WRk (v)
(6)

where WRk (v) = 1. Originally, this weight is proportional
to cos(τ)/Rk(x), where τ is the angle between the associ-



ated pixel ray direction and the surface normal measure-
ment. Newcombe et al. [15] showed that a simple average
with WRk (v) = 1 provides good results. Our tests showed
the same good performance with WRk (v) = 1. A similar
weight can be used to increase the count in a histogram bin
in Equation 3 by setting λ = b1 + |cos(τ)/Rk(x)|+ 0.5c.
With this approach, the tracking and reconstruction perfor-
mance can be improved for certain scenes.

Note, that we do not reproduce the exact values of the
input TSDF from Equation 3 in Equation 5. We are only
interested in the majority vote for a zero-crossing of the dif-
ferent input devices. Therefore, exact numerical values are
not necessary. The second volume implements a temporal
smoothing, filtering temporal noise in the depth values.

With our method the standard KinectFusion pose esti-
mation step can overcome calibration inaccuracies and dis-
agreements of the depth sensors by adjusting the cameras’
positions and orientations to positions in space, where most
Kinects agree in their measurements. Furthermore, the vi-
bration of the Kinects does not impair the transformation of
the depth values into the static frame of reference because
the vibration frequency is much higher than the image ac-
quisition rate and possibly remaining artifacts are filtered
out by integration over time. Figure 5 in Section 5.1 shows
a comparison between a straight forward application of the
original KinectFusion algorithm and OmniKinect fusion.

4.2 3D video and free viewpoint rendering
Capturing and rendering 3D videos is an important com-

ponent of a variety of applications. For example, in 3D tele-
conferencing each participant needs to be rendered as seen
from the observer’s viewpoint. For digital entertainment
and virtual try-on applications, a user wants to see herself
immediately on a screen, immersed in a virtual world and
augmented with virtual objects. To demonstrate the utility
of the suggested system for these applications, we have im-
plemented a free viewpoint rendering algorithm to display
the 3D scene interactively.

Figure 4: Free-viewpoint rendering of a static
round table. From left to right: Point cloud ren-
dering directly from Kinect depth maps suffers from
low-quality edges. Visual hulls, on the other hand,
have sharp edges, but not enough concavities. By
intersecting the two surface representations, we are
able to achieve a much more desirable result. The
red cylinders indicate the ground truth diameter of
the table on the right.

The image-based visual hull (IBVH) algorithm reconstructs
and renders 3D objects from silhouette images. It is very
efficient compared to stereo matching techniques. Addition-
ally, it has the advantage of avoiding an explicit intermedi-
ate data representation, such as a voxel grid (as computed
by KinectFusion) or mesh. It derives output depth maps
directly from silhouette images and thus only computes sur-

face regions that are actually visible. It can therefore provide
pure dense image synthesis faster than with KinectFusion.

The IBVH algorithm produces depth maps of the object
with clear edges, watertight topology, and no noise, even
when using cheap cameras. However, it does not incorpo-
rate the depth data that is available in our system: it was
designed to work with standard color cameras. Therefore,
it fails to reconstruct some of the concavities.

In contrast to color images, depth maps from Microsoft
Kinect are rather noisy and suffer from occlusions at depth
discontinuities. At the same time, they convey more infor-
mation about the shape of the scene. To get the advantages
from both depth map-based rendering and image-based vi-
sual hull rendering, we combine the strengths of both ap-
proaches as follows.

Silhouette-carved point clouds: A prerequisite for
visual hulls are silhouette images. To obtain silhouette im-
ages, the scene needs to be captured without foreground
objects before the visualization starts. We use background
subtraction based on color- and depth values to segment
foreground objects. This method is more robust than rely-
ing on color or depth alone.

Our first method to incorporate visual hull information
into point-based rendering is to carve the point clouds on
the image planes by only considering depth values that are
inside the silhouettes. Silhouettes are calculated by using bi-
nary foreground masks, which can be generated by using the
aforementioned background subtraction. During our experi-
ments we observed that some of the depth values are outliers
even though they are inside their respective silhouettes.

Visual hull-carved point clouds: The visual hull of
an object is a conservative surface estimate: It contains the
whole object plus space that does not belong to the object.
To remove low-quality depth values that caused noise in the
silhouette-carved approach, we restrict the point cloud from
all Kinects to the 3D space that is covered by the visual hull.

To do so, we perform IBVH rendering followed by point
splatting to get both surface estimates. Then, all point
splats are culled against the visual hull surface at that pixel.
The result can be seen in Figure 4: concavities are recon-
structed while sharp and precise edges are preserved.

5. EVALUATION AND RESULTS

5.1 OmniKinect fusion performance
To evaluate the performance of the OmniKinect fusion al-

gorithm from Section 4.1, we have recorded several static
scenes and compared their reconstruction results to a di-
rect adaptation of the KinectFusion algorithm. The direct
method integrates the TSDF values of each Kinect into a
common volume with atomic operations. Figure 5 shows
a comparison of horizontal and vertical slices through the
TSDF volumes of these two approaches with a selected scene,
which contains a simple box. Another qualitative compari-
son is given in Figure 6, using a reconstruction of the result-
ing zero-level set of the same round table object as shown
in in Figure 4. Both reconstructions used the same parame-
ters with µ = 0.1[m] and a TDFS size of 2563 for the surface
predictions, which were dumped after 10 frames. The corru-
gated regions in Figure 5 are the curtains around the setup.

Our additional computations introduce an average over-
head of 3 − 9ms for the TSDF histogram evaluation per
Kinect and 7 − 16ms for the histogram filtering, depend-



Figure 5: Overview over one of the test scenes using a large brown cardboard box and a comparison between
cutting planes of the TSDF of a straight forward application of the KinectFusion algorithm to our approach.

Figure 6: A qualitative comparison of the zero-level
set resulting from the direct application of Kinect-
Fusion and our approach with the same object as
shown in Figure 4 after 10 frames of recording time.
For the direct approach (left), no clear zero-crossing
can be extracted for the table surface. Similar to
Figure 4, the red cylinders indicate the ground truth
diameter of the table on the right.

ing on the volume size and number of used histogram bins.
A detailed run-time analysis for the original KinectFusion
algorithm with multiple Kinect support and our system is
given in Figure 7. We have performed our tests on a Nvidia
GTX680 and average the overall processing times over 50
full computation cycles.

5.2 Free viewpoint rendering performance
To evaluate the quality of the OmniKinect setup, we cap-

tured an object of known size: a table with circular top (see
Figure 4). We then reconstructed and rendered the object
with a varying number of sensors with two methods: visual
hulls and point cloud rendering.

Figure 8 shows the results. For two Kinects, the point
cloud that is rendered from the depth data is already quite
good when compared to the visual hull. One, two or even
three silhouette images do not contain enough information
to reconstruct such a surface in a meaningful way.

For a larger number of sensors, the rendering quality of the
visual hull improves. It surpasses the quality of point cloud
rendering at the edges of the object. The reason for this
is that the Kinect cameras can be calibrated intrinsically
and extrinsically very exactly, which directly translates to
precise visual hull edges.

IBVH avoids explicit data representations and is output-
driven: for every output pixel exactly one surface intersec-
tion is computed. Invisible parts or backsides of the object
are not computed, which makes it very efficient. Point splat-
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Figure 7: Evaluation of different configurations of
OmniKinect fusion (green) compared to a straight
forward implementation of the KinectFusion algo-
rithm for multiple Kinects (blue). The KinectFusion
range covers tests with TSDF volume sizes between
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same TSDF volume sizes. Additionally histograms
with 5, 7, 9 and 11 bins have been measured for
these volume sizes.

ting is also a very efficient algorithm because modern GPUs
are built for fast geometry transformations. The required
scatter operation is also significantly faster to compute with
recent CUDA versions. As a result, the visual-hull carved
point cloud algorithm takes around 40 ms to compute on an
Nvidia Quadro 6000 at a resolution of 1000 × 1000 pixels
using 7 Kinects.

6. APPLICATIONS
In this section, we present selected application examples

that leverage the OmniKinect system.
Full body scanning: An obvious application for our

OmniKinect-fusion algorithm is detailed smooth body cap-
turing. The user or dummy is placed in the center of the
room and the zero-level set of the TSDF volume is extracted
as soon as sufficient integration quality has been reached.
During our tests, we have achieved good results already af-
ter 5-10 frames. Figure 9 shows an example for that use case.

Consistent photometric registration: Photo-realistic
AR requires a geometric and a photometric model of the
real world, so that virtual objects can be embedded consis-
tently with the real environment. For example, virtual and
real objects should mutually occlude each other, and cast
shadows upon each other. Using the OmniKinect fusion de-



Figure 8: The top row shows visual hull rendering,
the bottom row point cloud rendering for a vary-
ing number of Kinects. The red circle indicates the
ground truth diameter of the reconstructed object.

Figure 9: Example of a dummy body-scan applica-
tion using OmniKinect fusion after ten frames inte-
gration time. A volume rendering of the resulting
TSDF volume is shown in the center and the result-
ing mesh of the zero-level set at the right.

tailed in section 4.1, high quality geometric information of
the real scene can be obtained almost instantaneously. To
acquire an estimate of the real-world illumination in real
time, previous approaches have relied on special light probe
devices, such as a mirror ball or an omni-directional cam-
era. OmniKinect’s high quality volumetric model allows to
use the scene itself as a light probe, and infer the current
illumination from observations of the scene.

As proof of concept, we implemented a photometric regis-
tration application (Figure 10). For the light estimation, we
simultaneously observe the reflection of the incident light
on the scene geometry from multiple views. This allows
measuring all outgoing light from the scene, which can be
interpreted as a hemisphere of illumination directions. The
final result is a combination of all light estimates from each
camera view. For efficient real time computation, the illu-
mination is represented using Spherical Harmonics.

X-ray visualization in Augmented Reality: Live vol-
umetric representations of a real scene allow advanced X-ray
visualizations in AR. Rather than simply combining virtual
and real objects, we can leverage the volumetric representa-
tion to modify the appearance of a real object with respect
to other real objects.

For example, X-ray visualization can make a real object
translucent and show another real object occluded by the
first one. Because the whole working volume is available

Figure 10: The three images show the reconstruc-
tion of the scene lit by the estimated environment
light. For better comparison the input images of the
camera are added as small inserts in the upper right
corner. Note that the light situation is the same for
all three images.

in real time, both the occluder and the occluded can be
dynamic, animated objects such as moving human beings.

Technically, any combination of real and virtual views can
be rendered to separate frame buffers, and then blended in
a final step relying on a G-buffer approach [7]. Multiple ob-
jects can be extracted from the OmniKinect reconstruction
using an appropriate segmentation method, for example by
giving a bounding volume for a static object or by compar-
ing a scene with and without a particular object. The object
can then be rendered separately, and treated differently in
the compositing, for example by modulating transparency.

Figure 11: X-Ray visualizations: see-through-me
demo by segmenting a person (left), see inside the
box with free-hand Kinect (middle), by comparing
minimal differences in two scenes and using Om-
niKinect to see behind an object (right).

3D Magic Book: The OmniKinect setup can create a
3D AR Magic Book. Similar to 3D Live [16], we can record
movement sequences and play them back in an AR envi-
ronment. As our system is simpler to use, it can be eas-
ily deployed and provide a way to create a personalized 3D
photo-book, a three-dimensional extension of online photo-
book creation tools. The accompanying video presents an
example of playing an AR book of a Karate training. Each of
the sequences has been exported separately in an offline pro-
cess, converted to a point cloud and saved to a compressed
format supporting animation.

3D Magic Mirror: OmniKinect combined with a 3D
autostereoscopic display can be used for a Magic Mirror
metaphor where the user interacts with the reconstructed
sequence (see Figure 12). Especially in sports that require
specific postures the trainee can directly observe the scene in
full 3D. Furthermore, the OmniKinect fusion reconstruction
can be used to create a real-time differential 3D reconstruc-
tion to analyze diverging movements.



Figure 12: MagicMirror using the OmniKinect for
generating a virtual trainer.

7. CONCLUSIONS
We have presented an easy-to-build, flexible, and afford-

able system for real-time 3D reconstruction and free-viewpoint
rendering of real-world scenes. While conceptually simple,
the calibration and fusion of data from multiple depth sen-
sors requires careful design and deployment of the hardware
setup and advanced algorithms for data processing and anal-
ysis. We have successfully improved the KinectFusion al-
gorithm to accommodate multiple sensors simultaneously.
Using this foundation, it is easy to implement depth seg-
mentation algorithms and geometrically aware AR for dense
dynamic scenes.

For 3D video capture and free-viewpoint rendering of mov-
ing and deforming objects, we introduced visual-hull carved
point cloud rendering. It combines the advantages of image-
based visual hull and point cloud rendering: precise edges
and support for concave objects.

As future work we will conduct more thorough quantita-
tive and qualitative evaluations, and investigate more ap-
plications. Currently, we are also working on an automatic
marker-less online depth value correction, which will ease
the initial calibration procedure significantly.
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